Measure and Integration: Mid-Term, 2023-24

(1) Let X be a set and C a non-empty collection of subsets of X. Consider $\sigma(C)$, the smallest σ -algebra of X containing C, and let

$$\mathcal{A} = \{ A \in \sigma(\mathcal{C}) : A \in \sigma(\mathcal{C}_0) \text{ for some countable collection } \mathcal{C}_0 \subseteq \mathcal{C} \},$$

(the collection C_0 depends on the set A, and by countable we mean empty, finite or infinitely countable).

- (a) Show that A is a σ -algebra over X. (2 pts)
- (b) Show that $A = \sigma(C)$. (1 pt)

3. (2) Let (X, \mathcal{A}, μ) be a measure space. For any $B \in \mathcal{A}$ with $0 < \mu(B) < \infty$, define $\mu_B : \mathcal{A} \to [0, \infty)$ by $\mu_B(A) = \frac{\mu(B \cap A)}{\mu(B)}$.

- (a) Prove that μ_B is a measure on (X, A) for any $B \in A$ with $0 < \mu(B) < \infty$. Conclude that the triple (X, A, μ_B) is a probability space. (1 pt)
- (b) Assume that $\mu(X) < \infty$ and that $X = \bigcup_{n=1}^{\infty} B_n$ (disjoint union) with $B_n \in \mathcal{A}$ and $\mu(B_n) > 0$.
 - (i) Prove that for any $A \in \mathcal{A}$, one has

$$\mu(A) = \sum_{n=1}^{\infty} \mu_{B_n}(A) \, \mu(B_n).$$

(1.5 pts)

(ii) Prove that for any for any $i \ge 1$ and any $A \in \mathcal{A}$ with $\mu(A) > 0$, one has

$$\mu_{A}(B_{i}) = \frac{\mu_{B_{i}}(A) \, \mu(B_{i})}{\sum_{n=1}^{\infty} \mu_{B_{n}}(A) \, \mu(B_{n})}.$$

(1 pt)

(3) Consider the measure space $([0,1),\mathcal{B}([0,1)),\lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ -algebra restricted to [0,1) and λ is the restriction of Lebesgue measure on [0,1). Let $\{[a_n,b_n):n\in\mathbb{N}\}$ be a countable **partition** of [0,1) such that $\lambda([a_n,b_n))>0$. Define a function $f:[0,1)\to[0,1)$ by

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{x - a_n}{b_n - a_n} \right) \cdot \mathbb{I}_{\left(a_n, b_n\right)}(x),$$

where \mathbb{I}_A denotes the indicator function of the set A

- (a) Show that f is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable. (1 pt)
- (b) Prove that $\lambda(f^{-1}([a,b)) = b a$ for any interval [a,b) in [0,1) with a < b. What is the value of $\lambda(f^{-1}([a,b)))$ if $b \le a$? (1.5 pts)
- (c) Prove that the image measure $f(\lambda) = \lambda \circ f^{-1}$ satisfies $f(\lambda) = \lambda$. (1 pt)

