functional analyse

Problem 1 (polarization identity, 4 pt). Let $(X, \langle \cdot, \cdot \rangle)$ be a Hermitian inner product space. (Hence $\mathbb{K} = \mathbb{C}$.) Show that

$$\langle x, y \rangle = \frac{1}{4} \Big(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \Big), \quad \forall x, y \in X.$$

Problem 2 (comparing ℓ^p -norms, 4 pt). Let $p \leq q \in [1, \infty)$. Show that

$$\begin{split} \ell^p &\subseteq \ell^q, \\ \|x\|_q &\leq \|x\|_p, \quad \forall x \in \ell^p. \end{split}$$

Problem 3 (quotient seminorm, 6 pt). Let $(X, \|\cdot\|)$ be a semi-normed vector space and $Y \subseteq X$ a linear subspace. Prove that the following map is a seminorm:

$$\|\cdot\|^{Y}: X/Y \to [0, \infty),$$

 $\|x + Y\|^{Y}:=\inf_{y \in Y} \|x - y\|.$

Remark: You do not need to prove that X/Y is a vector space.

Problem 4 (integration bounded, 5 pt). We equip C[0,1] with the supremum norm $\|\cdot\|_{\infty}$. Let $y \in C[0,1]$. Show that the operator

$$T:C[0,1] \to \mathbb{K}, \quad Tx:=\int_0^1 x(t)y(t)\,dt,$$

is bounded and calculate its operator norm.

Hint: Prove that for a certain constant $C \ge 0$ we have $||T|| \le C$ and $||T|| \ge C - \varepsilon$, for every $\varepsilon > 0$.

Problem 5 (equivalence of norms, 3 pt). Let $\|\cdot\|$ and $\|\cdot\|$ be complete norms on a vector space X, such that there exists $C \in \mathbb{R}$ satisfying

$$||x|| \le C|||x|||, \quad \forall x \in X.$$

Show that $\|\cdot\|$ and $\|\cdot\|$ are equivalent.

Hint: Use a result from the lecture.

Problem 6 (dual space of ℓ^{∞}/c_0 , 4 pt). Prove that the dual space of ℓ^{∞}/c_0 , equipped with the quotient norm, is nonzero.

Problem 7 (Hilbert space reflexive, 7 pt). Prove that every Hilbert space H is reflexive.

Hint: Relate the canonical map $\iota_H: H \to H''$ to the map

$$\Phi_H: H \to H', \quad \Phi_H(y) := \langle \cdot, y \rangle.$$

Problem 8 (bidual operator, canonical map, 3pt). Let X, Y be normed spaces and $T \in B(X, Y)$. Prove that

$$T'' \circ \iota_X = \iota_Y \circ T.$$

Problem 9 (adjoint of left-shift, 3 pt). Find the adjoint operator for

$$L: \ell^2 \to \ell^2, \quad Lx := (x^2, x^3, \dots).$$

Remark: You may use that L is linear and bounded. You may also use the characterization of the adjoint operator that was proved in an assignment.

Problem 10 (spectrum, 7 pt). Let

$$T: X := C([0,1], \mathbb{C}) \to X, \quad (Tx)(t) := \int_0^t x(s)ds.$$

Show that the spectrum of T equals $\{0\}$.

Hint: Compute the spectral radius of T.

Problem 11 (continuous functions and ℓ^2 , 15 pt). Let $A \subseteq [0,1]$ be a closed subset different from [0,1]. We define

$$X := \left\{ x \in C[0,1] \, \middle| \, x(t) = 0, \, \forall t \in A \right\}, \quad \| \cdot \| : X \to \mathbb{R}, \, \|x\| := \sqrt{\int_0^1 |x(t)|^2 dt}.$$

Prove that there exists a linear isometry $T: X \to \ell^2$, whose image is dense.

Remark: In this exercise you may use any exercise from the assignments (and any result from the lecture and the book by Rynne and Youngson).