Functional Analyse

Problem 1 (norm on space of functions, 5 pt). Let $k \in \mathbb{N} \cup \{0\}$. We define

$$\begin{split} X := \big\{ f: \mathbb{R} \to \mathbb{R} \, \big| \, f \text{ is } k \text{ times continuously differentiable, } f^{(i)} \text{ is bounded, } \forall i = 0, \dots, k \big\}, \\ \| \cdot \| : X \to [0, \infty), \quad \| f \| := \max_{i = 0, \dots, k} \sup_{x \in \mathbb{R}} |f^{(i)}(x)|, \end{split}$$

where $f^{(i)}$ denotes the *i*-th derivative of f. $(f^{(0)} = f)$ Show the following:

- (i) X is a linear subspace of the space of all functions from $\mathbb R$ to $\mathbb R$.
- (ii) The map $\|\cdot\|$ is a norm.

a

Problem 2 (orthogonal complement, 4 pt). Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space. We define the *orthogonal complement* of A to be the set

$$A^{\perp} := \big\{ x \in X \, \big| \, \langle x, y \rangle = 0, \, \forall y \in A \big\}.$$

Show that A^{\perp} is a linear subspace of X and that it is closed in X.

Problem 3 (multiplication operator, 6 pt). Let $p \in [1, \infty)$, and $x \in \ell^{\infty} = \ell^{\infty}(\mathbb{N})$. We define

$$M_x: \ell^p \to \ell^p, \quad M_x(y) := xy.$$

Show the following:

- (i) The map M_x is well-defined, i.e., $M_x(y) \in \ell^p$ for every $y \in \ell^p$.
- (ii) M_x is linear.
- (iii) The operator norm of M_x is given by

$$||M_x|| = ||x||_{\infty}.$$

Problem 4 (ℓ^p separable, 5 pt). Prove that for every $p \in [1, \infty)$ the space $\ell^p = \ell^p(\mathbb{N})$ is separable.

Problem 5 (prescribed Fourier coefficients, 4 pt). We call a function $f:[0,1]\to\mathbb{R}$ Lebesgue-measurable iff the set $f^{-1}((-\infty,b])$ is Lebesgue-measurable for every $b\in\mathbb{R}$. Does there exist a Lebesgue-measurable function $f:[0,1]\to\mathbb{R}$, such that

$$\int_{[0,1]} |f|^2 d\lambda < \infty, \quad \widehat{f}^n = \frac{1}{\sqrt[4]{n}}, \, \forall n \in \mathbb{N}?$$

Remark: Here λ denotes the Lebesgue-measure on [0,1] and \widehat{f}^n the n-th Fourier coefficient of f.

(More problems on the back.)

Problem 6 (completeness of the quotient seminorm, 9 pt). Let X be a real vector space and $Y \subseteq X$ a linear subspace. We denote by X/Y the quotient of X by Y. Let $\|\cdot\|$ be a seminorm on X. We define the quotient seminorm to be the map

$$\|\cdot\|^Y: X/Y \to [0,\infty), \quad \|\overline{x}\|^Y:=\inf_{x\in \overline{x}}\|x\|.$$

Show that if $\|\cdot\|$ is complete then $\|\cdot\|^Y$ is complete.

Remark: You do *not* need to show that $\|\cdot\|^Y$ is indeed a seminorm.

Problem 7 (Hilbert space reflexive, 7 pt). Prove that every Hilbert space H is reflexive.

Hint: Relate the canonical map $\iota_H: H \to H''$ to the map

$$\Phi_H: H \to H', \quad \Phi_H(y) := \langle \cdot, y \rangle.$$

Problem 8 (dual space of ℓ^{∞} , 5 pt). Prove that the map

$$\Phi_{\infty}:\ell^1 o (\ell^{\infty})',\quad (\Phi_{\infty}y)x:=\sum_{i=1}^{\infty}x^iy^i,$$

is not surjective.

Remark: You do not need to show that this map is well-defined.

Hint: Use another problem of this exam.

Problem 9 (spectrum of integral operator, 7 pt). Let

$$T:X:=Cig([0,1],\mathbb{C}ig) o X,\quad (Tx)(t):=\int_0^t x(s)ds.$$

Show that the spectrum of T equals $\{0\}$.

Remark: The map T is well-defined and linear. You do not need to show this.

Hint: Compute the spectral radius of T.

Problem 10 (continuous bilinear map, 6 pt). Let $(X_i, \|\cdot\|_i)$, i = 0, 1, and $(Y, \|\cdot\|)$ be normed real vector spaces, and $b: X_0 \times X_1 \to Y$ a continuous bilinear map. Assume that X_1 is complete. Show that

$$\sup \{ \|b(x_0, x_1)\| \mid x_i \in \overline{B}_1^{X_i}(0), \, \forall i = 0, 1 \} < \infty.$$