Department of Mathematics, Faculty of Science, UU. Made available in electronic form by the $\mathcal{T}_{\mathcal{BC}}$ of A-Eskwadraat In 2005/2006, the course WISB315 was given by Richard D. Gill.

Introduction to Functional Analysis (WISB315) February 2006

Give the reasoning behind your answers and derivations; you can refer to standard results in Saxe's book.

Question 1

Is it true or not true that:

- a) $L_2(0,1)$ is a linear subspace of $L_1(0,1)$?
- b) $L_2(0,1)$ is a closed linear subspace of $L_1(0,1)$ (with respect to $\|\cdot\|_1$)?
- c) Giving B = C[0,1] the L_2 norm, the mapping $T: B \to \mathbb{C}$ defined by $Tf = f(\frac{1}{2})$ is bounded?
- d) Giving B = C[0,1] the L_2 norm, the mapping $T: B \to \mathbb{C}$ defined by $Tf = \int_0^1 f(x) dx$ is bounded?

Question 2

Suppose that $u^{(n)}$, n = 1, 2, ... is a countably infinite orthonormal sequence in a Hilbert space \mathcal{H} . Define \mathcal{U} to be the closed linear span of the $u^{(n)}$, i.e., the closure of the set of linear combinations of finitely many $u^{(n)}$.

- a) Explain why $\mathcal{U} = \{ \sum_n \alpha_n u^{(n)} : \sum_n |\alpha_n|^2 < \infty \}.$
- b) For an arbitrary element $v \in \mathcal{H}$ define $A(v) = \sum_{n} \langle v, u^{(n)} \rangle u^{(n)}$. Explain why A(v) is well defined and is an element of \mathcal{U} .
- c) We can write v=z+w where $z\in\mathcal{U},\,w\in\mathcal{U}^\perp,\,z$ and w are unique. We call z the orthogonal projection of v onto \mathcal{U} . Show that z=A(v) and that A is a bounded linear operator from \mathcal{H} to \mathcal{H} . Show that A is Hermitian. Compute its norm and its spectrum. Show that A is not compact.
- d) Suppose now that $\mathcal{H}=L_2(-\pi,\pi)$ and take the $u^{(n)}$ to be the sequence of cosine functions, including the constant function, taken from the usual trigonometric basis of \mathcal{H} (i.e., we omit the sines). Define $B:\mathcal{H}\to\mathcal{H}$ by $(B(v))(x)=\frac{1}{2}(v(x)+v(-x))$. Show that B=A. Hint: note that any element of $L_2(-\pi,\pi)$ can be written uniquely as a sum of an even and an uneven function: $v(x)=\frac{1}{2}(v(x)+v(-x))+\frac{1}{2}(v(x)-v(-x))$.

Question 3

Suppose that f_i , g_i , i = 1, ..., n are elements of C[0,1] and define $K(x,y) = \sum f_i(x)g_i(y)$. Suppose the f_i 's are linearly independent of one another, and the g_j 's are linearly independent of one another. Define Af by $(Af)(x) = \int_0^1 K(x,y)f(y)dy$.

- a) Show that A is a bounded linear operator from $L_2(0,1)$ to $L_2(0,1)$.
- b) Describe how you could compute the eigenvalues and eigenvectors of A, and show that its spectrum consists only of eigenvalues. Hint: it may be useful to introduce an orthonormal basis of the linear span of the g_j 's and f_i 's together. You may express your conclusions in terms of eigenvalues and eigenvectors of a finite dimensional matrix.

Question 4

This exercise concerns the characterization of compact subsets of ℓ_1 . (An element u of ℓ_1 is an infinite sequence of numbers u_i such that $||u||_1 = \sum_i |u_i| < \infty$).

Show that a subset A of ℓ_1 is compact if and only if it is (i) closed, (ii) bounded, and (iii) uniformly summable: for any given $\epsilon > 0$ there exists an i_0 such that for all $u \in A$, $\sum_{i > i_0} |u_i| \le \epsilon$.

You may build up your proof with the following ingredients:

- a) Show that a sequence $u^{(n)}$, n = 1, 2... of elements of a set A having properties (i)–(iii), has a convergent subsequence (i.e., a subsequence which converges in $\|\cdot\|_1$).
- b) Suppose A is closed and bounded but does not satisfy property (iii). That is: there exists an $\epsilon > 0$ such that for each i_0 there exists $u \in A$ with $\sum_{i \geq i_0} |u_i| > \epsilon$. Show there is a sequence $u^{(n)}$, $n = 1, 2, \ldots$ of elements of A without a convergent subsequence.
- c) Use the result (a) to show that (i)–(iii) implies A is compact; use result (b) to show that if A does not satisfy (i)–(iii) then it is not compact.