Elementary Number Theory Wisb 321

Final exam, January 12, 2009, 14-17

During the examination use of notes, books etcetera is not allowed. You can bring a simple calculator to do some of the arithmetic if you want. Motivate your answers. Success!

- 1. (a) (0.5 pt) Let x, y be two positive co-prime integers (i.e. gcd(x, y) = 1). Show that every odd prime divisor p of $x^2 + y^2$ satisfies $p \equiv 1 \pmod{4}$.
 - (b) (0.5 pt) Let x, y be two positive integers, not necessarily co-prime this time. Show that $x^2 + y^2$ is divisible by at least one prime p which is either 2 or 1(mod 4) (equivalently, $p \not\equiv 3 \pmod{4}$).
 - (c) (1 pt) Show that any square z^2 divisible by at least one prime p with $p \not\equiv 3 \pmod{4}$ can be written as the sum of two positive squares.
 - (d) (0.5 pt) We are given that any interval [m+1, 2m] with $m \in \mathbb{Z}_{\geq 3}$ contains a prime p with $p \equiv 3 \pmod{4}$. Find all positive integers n such that n! can be written as the sum of two squares.
- 2. (2.5 pt) Let A, B be positive integers. Assuming the *abc*-conjecture, show that the equation $Ax^4 + By^4 = z^3$ in integers x, y, z with gcd(x, y) = 1 has at most finitely many solutions.
- 3. Let p be a prime such that $p \equiv 1 \pmod{3}$ and denote by ω the cube root of unity $e^{2\pi i/3}$.
 - (a) (0.5 pt) Show that for any real a, b we have $|a+b\omega|^2 = a^2 ab + b^2$.
 - (b) (0.5 pt) Show that there exists a Dirichlet character $\chi: (\mathbb{Z}/p\mathbb{Z})^* \to \mathbb{C}$ of order 3.
 - (c) (0.5 pt) What is the definition of the Jacobi-sum $J(\chi,\chi)$?
 - (d) (0.5 pt) Show that $J(\chi, \chi)$ is a number of the form $a + b\omega$ with $a, b \in \mathbb{Z}$ and explain why the absolute value is \sqrt{p} .
 - (e) (0.5 pt) Show that p can be written in the form $a^2 ab + b^2$.

Please turn over

4. Let $\pi(x)$ be the prime counting function. It is given that

$$\frac{1}{2} \frac{x}{\log x} < \pi(x) < 2 \frac{x}{\log x}$$

for all x > 10. By p_n we denote the *n*-th prime. In particular, $\pi(p_n) = n$.

- (a) (1 pt) Show that $p_n > n(\log n)/2$ for all n > 10.
- (b) (1 pt) Show that there exists n_0 such that $p_n < 3n \log n$ for all $n > n_0$.
- (c) (0.5 pt) Without using the above inequalities for $\pi(x)$, but only elementary arguments, show that

$$\pi(n) \leqslant \frac{n}{3} + 2$$

for all integers $n \geq 2$.