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In all problems write your solution in detail. Each step has to be proven or cited from class.
If you cannot solve part (a) or (b) of a problem, you are nevertheless allowed to use it in the
following parts without proof.

Problem 1 (8 points). Determine all odd primes p such that

x2 ≡ 13 mod p

has a solution with x ∈ Z.
More precisely: Find an n > 1 and a1, . . . , ar ∈ Z such that x2 ≡ 13 mod p has a solution if

and only if p ≡ ai mod n for some 1 ≤ i ≤ r.

Problem 2 (10 points). Decide for the following three congruences whether there are solutions.
(Hint: You might want to determine first whether the numbers 101, 91 and 9991 are prime.)

(a) x2 ≡ 91 mod 101

(b) x2 ≡ 5 mod 91

(c) x2 ≡ 2 mod 9991

Problem 3 (12 points). Let p be an odd prime.

(a) Show that 1k + 2k + · · ·+ (p− 1)k ≡ −1 mod p if (p− 1)|k.

(b) Let gcd(k, p − 1) = 1. Show that for every a ∈ Z, there is an x ∈ Z with xk ≡ a mod p
and that any two such x are congruent to each other modulo p.

(c) Show that 1k + 2k + · · · (p− 1)k ≡ 0 mod p if gcd(p− 1, k) = 1.
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