Exam Foundations of Mathematics A with
solutions

november 6, 2008, 14.00-17.00

THIS EXAM CONSISTS OF 5 EXERCISES; SEE ALSO THE BACK OF THIS
SHEET.

Advice: first do those exercises you can do right away; then start thinking
about the others. Good luck!

Exercise 1. Determine which of the following sets are countable or uncount-
able. Give a short explanation.

a) {x€R|sinx € Q}
b) {f e {0,1}V|3kVn > kf(n) = 0}
c) {ACN]|Ais infinite}

Solution: a) Since the finction sin is injective on each interval [(n — ), (n+
1

5)7) and Q is countable, there are in each such interval only countably many
x with sin(z) € @Q; and R is a countable union of these intervals. So the
whole set is a countable union of countable sets; hence countable.

b): Let {0,1}* be the set of finite 01-sequences. Then {0, 1}* is countable,
and there is a surjective function from {0, 1}* to the set in the exercise (send
a finite sequence o to the function which starts with ¢ and has zeroes forever
after); hence this set is countable too.

c): This set is equal to P(N) —Pg,(N). Now P(N) is uncountable and Pgy, (N)

is countable, so the set in the exercise is uncountable.

Exercise 2. Let X be a set, L a well order, and f : L — X a surjective

function. We define the following relation on X: = < y holds if and only if

for every [ € L such that f(l) =y, there is a k < [ such that f(k) = x.
Prove, that this relation gives a well order on X.



Solution: define s : X — L by: s(x) is the least | € L such that f(l) =z
(this is a good definition since f is surjective and L is a well-order). Now
it is easy to see that for the given relation < on X we have: = < y in X
precisely when s(z) < s(y) in L. So (X, <) is isomorphic to a subset of the
well-order L (with the order from L). Because every subset of a well-order
is a well-order, (X, <) is a well-order.

More directly, one can say: if A C X is a nonempty subset, then because
f is surjective the subset f~!'(A) = {l € L| f(I) € A} is nonempty and has
therefore a least element /4. You deduce easily that f(l4) is the least element
of A for the relation < on X. So every nonempty subset has a least element,
hence (X, <) is a well-order.

Exercise 3. Suppose A is a subset of R. A real number ¢ is said to be
algebraic over A, if there is a polynomial P(X) = a9 + a1 X + -+ + a, X",
with coefficients ay, . .., a, from A, such that P(§) = 0. In this exercise you
may use the known fact, that the number e is not algebraic over Q.

Prove that there is a subset A of R with the following properties:

i) e is not algebraic over A;

ii) every real number £ can be written as a quotient ggz;, where P(X) and

Q(X) are polynomials with coefficients from A.

[Hint: apply Zorn’s Lemma to the poset of those subsets A C R that satisfy:
0€ A, 1€ Aand e is not algebraic over A]

Solution: the hint was a bit miserly; in fact, it was better to consider the
poset P of those subsets A of R satisfying: a) 0,1 € A b) if z € A then
—x € A c) e is not algebraic over A. Suppose C is a chain in P; consider | JC.
Clearly, | JC satisfies a) and b); and if e were algebraic over |JC there would
be a polynomial P with coefficients in |JC such that P(e) = 0; but every
polynomial has only finitely many coefficients, so in fact there would already
be a C' € C which contained all coefficients; then e would be algebraic over
C which contradicts that C' € P. We conclude: if C is a chain in P then |JC
is in P. So, P satisfies the conditions of Zorn’s Lemma and has a maximal
element A. We prove b) for A:

If £ € Athen € = %, a quotient of constant polynomials with coefficients
in A. If £ ¢ A then by maximality of A, AU {¢,—¢} is not a member of P
although it satisfies a) and b). Therefore, e is algebraic over AU{&, =&} let
P(e) = 0 with coefficients in AU{&, —£}. Not all coefficients are in A because



e is not algebraic over A; and not all coefficients are +¢ because that would
imply £ = 0 (contradicting that & € A), or e algebraic over A, a contradiction
in both cases. So P(X) can be written as Q(X) + {R(X), where @ and R
are polynomials with coefficients in A. The relation P(e) = 0 can now be
rewritten to & = _RC’%S), and by condition ¢) also —@) is a polynomial with
coefficients in A, so this is of the desired form.

Exercise 4. In this exercise we consider the language L5 of posets: there
is one binary relation symbol <.

For every natural number n > 1 we denote by M, the L,.-structure
which consists of all divisors of n, where we put k < [ precisely when k is a
divisor of [.

a) Give an Lp.s-sentence which is true in Msy but false in Mig;
b) The same for M3z, and Moy.

Give an explanation in words of what your sentences are intended to mean.

Solution: in the first case, you can see that M3z, is a linear order whereas Mg
is not; so you could take Vzy(z <y Vy < x). Another possibility is to see
that M3y contains a chain of length 6 and Mg does not; so you could take

dry3wy -+ - Fwg(r) < @xo Ao <23 A Aas < xg
/\_‘(5131 = ZEQ) AN _|(ZL’2 = ZE3) VANREIWAN _|((L’5 = flf(j))

In the second case, you could write down in a similar way a sentence express-
ing “there is no chain of length 5”, which is true in M3, but false in Ms4. Or,
in Mz, “there are 3 parwise incomparable elements”:

JryFz(—-(z <y A=y <z)AN-(z < 2) A=(z < x)
A=y < 2) A=z <))

Exercise 5. Again, we consider the language L, of the previous exercise.
Suppose M is an infinite well order. Prove that there is a poset M’ with the
following properties:

i) M and M’ satisfy the same L,,s-sentences

ii) M’ is is not a well order.



[Hint: let L* = Lyos U C, where C' = {cg, c1,...} is a set of new constants.
Define the following L*-theory:

T =A{o|ME= ¢} U{ckr < op A(cwrr = cx) |k € N}

Prove, using the Compactness Theorem, that T" has a model, and that every
model of T satisfies i) and ii).]

Solution: let’s abbreviate Ty for the set of Lys-sentences true in M. If 77 C
T is a finite subtheory then 7" is contained in Ty U{cx11 < ¢ |0 < k < N}
for some N € N. Now because M is infinite, it certainly contains a descending
sequence of length N + 2, hence interpretations for ¢, . .., cyy1 in such a way
that 7" is true in M. So T" is consistent; hence by the Compactness Theorem
T is, and has a model M’. This model satisfies i): if M | ¢ then ¢ € Ty so
M' = ¢; if M B~ ¢ then M = —¢ so —¢ € Ty, whence M’ [~ ¢. Also, M’ is
not a well-order because M’ contains an infinite descending chain.



