RETAKE EXAM

(16th July 2018, 9:00 - 12:00)

- You are allowed to use one A4-sheet (recto-verso) of handwritten notes. By contrast, you are not allowed to use any book or electronic devices during the exam.
- Every question part is worth 1 point except where indicated otherwise. If you obtain 20 points, you are guaranteed a grade 10.
- Do not just give answers but prove your statements, e.g. by referring to a theorem in the course.

Question 1. Let G be a finite group.

- (a) For $H \subseteq G$ a normal subgroup of order |H| = 2, show that $H \subseteq Z(G)$.
- (b) Given a finite G-set X, define the associated permutation character χ_X and show that χ_X is irreducible if and only if |X| = 1.
- (c) (2 points) Still for a finite G-set X, show that $(\chi_X, \chi_{\mathbb{C}}) = |X/G|$ is the number of orbits (where $\chi_{\mathbb{C}}$ is the trivial G-character).

Question 2. Let G be a finite group, $\psi \colon H \to \mathbb{C}^{\times}$ a linear character of a subgroup $H \leqslant G$ and

$$e_{\psi} := \frac{1}{|H|} \sum_{h \in H} \frac{h}{\psi(h)} \in \mathbb{C}H.$$

- (a) Show that e_{ψ} is idempotent (i.e. $e_{\psi}^2=e_{\psi}$).
- (b) (2 points) Show that $\mathbb{C}e_{\psi}$ is a $\mathbb{C}H$ -submodule of the regular module $\mathbb{C}H$ and that its character is ψ .
- (c) (2 points) Show that $(\mathbb{C}e_{\psi})^{\uparrow G} \cong (\mathbb{C}G)e_{\psi} = \{xe_{\psi} \mid x \in \mathbb{C}G\} \leqslant \mathbb{C}G$ and conclude that the character of $(\mathbb{C}G)e_{\psi}$ is $\psi \uparrow^{G}$.

Hint: You can even show that if $N \leq \mathbb{C}H$ is a $\mathbb{C}H$ -submodule, then $N \uparrow^G \cong (\mathbb{C}G)N$.

Question 3. Let X be a G-set and consider $X^2 = X \times X$ as a G-set with the diagonal action (given by g(x, x') = (gx, gx')).

- (a) Show that $\chi_{X^2} = (\chi_X)^2$ and conclude that $(\chi_X)^2 1$ is a well-defined character of G.
- (b) Show that the action of G is transitive (i.e. for all $x, y \in X$, there is $g \in G$ with y = gx) if and only if $\langle \chi_X 1, \chi_{\mathbb{C}} \rangle = 0$, where $\chi_{\mathbb{C}}$ is the trivial G-character.

Now suppose that G acts transitively and that $|X| \ge 2$. Such a transitive G-action is called doubly transitive iff for all $x \ne x'$, $y \ne y' \in X$, we find a $g \in G$ such that y = gx and y' = gx'.

- (c) (2 points) Show that the following are equivalent:
 - (i) the G-action on X is doubly transitive;
 - (ii) the G-action on X^2 has exactly two orbits;
 - (iii) $\langle (\chi_X)^2, \chi_{\mathbb{C}} \rangle = 2$.
- (d) Using characterisation (iii), conclude that $\chi_X 1$ is irreducible iff the action of G on X is doubly transitive.

Question 4. Let $G = F_8$ be the so-called *Frobenius group* of order 56 (you don't need to show this) given by

$$F_8 = \left\langle a, b, c, d \;\middle|\; \begin{matrix} a^2 = b^2 = c^2 = d^7 = e, \; ab = ba, \; ac = ca, \; bc = cb, \\ dad^{-1} = bc, \; dbd^{-1} = a, \; dcd^{-1} = b \end{matrix}\right\rangle.$$

- (a) For $\zeta := \exp(i2\pi/7)$, show that $\sum_{j=0}^{6} \zeta^{j} = 0$. Hint: Geometric series
- (b) Show that every element of G is of the form $a^{i_1}b^{i_2}c^{i_3}d^j$ with $i_1, i_2, i_3 \in \{0, 1\}$ and $j \in \{0, ..., 6\}$ and that all $a^{i_1}b^{i_2}c^{i_3}$ form a conjugacy class.
- (c) Determine the remaining conjugacy classes: For a fixed $j \in \{1, ..., 6\}$, show that the elements of the form $a^{i_1}b^{i_2}c^{i_3}d^j$ form a conjugacy class.
- (d) Show that $N := \langle a, b, c \rangle \cong (C_2)^3 \triangleleft G$ is normal.
- (e) Construct linear characters of G by lifting from G/N.
- (f) Complete the character table of G.