
Statistiek (WISB361)

Final exam
July 3, 2014

Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.

The maximum number of points is 100.
Points distribution: 20–20–20–20–10–10

1. Consider the random variable X with probability density function:

f(x; θ) =

{
c(θ)x2e−θ x x > 0,

0 otherwise,

where θ > 0 and θ is assumed unknown.

(a) [2pt] Show that c(θ) = θ3/2.
Solution:
First of all, I remind you that for the Gamma function: Γ(n) = (n − 1)!, with n integer and Γ(t) =∫∞
0
xt−1exdx [In this way you avoid a lot of integrations by parts!!!]. Hence,

1

c(θ)
=

∫ ∞
0

x2e−θxdx = Γ(3)/θ3 = 2/θ3

(b) [5pt] Show that θ̃ = 2/X is an unbiased estimator of θ and find its variance.
Solution:
We have:

E(θ̃) = E(2/X) = θ3
∫ ∞
0

xe−θxdx = θ3θ−2Γ(2) = θ

(c) [5pt] Find the Fisher information I(θ) for the parameter θ and compare the variance of θ to the Cramer-
Rao lower bound.
Solution:
In order to calculate the Fisher information, we first calculate:

∂

∂θ
ln f(x; θ) = −x+ 3/θ

− ∂2

∂θ2
ln f(x; θ) = 3/θ2

Hence, VarRao = θ2/3.
For the variance:

E(θ̃2) = 2θ3
∫ ∞
0

e−θxdx = 2θ2

so that Var(θ̃) = 2θ2 − θ2 = θ2. Thus,

Var(θ̃)

VarRao
= 3

(d) [3pt] Let µ = 1/θ and show that µ̂ = X/3 is an unbiased estimator of µ.
Solution:

E(µ̂) =
θ3

6

∫ ∞
0

x3eθxdx =
θ3Γ(4)

6θ4
= 1/θ



(e) [5pt] Find the variance of µ̂ and show that it attains the Cramer-Rao lower bound.
Solution:

E(µ̂2) =
θ3

18

∫ ∞
0

x4eθxdx =
θ3Γ(5)

6θ8
= 4/(3θ2)

so that Var(µ̂) = 1
3θ2 . For Cramer–Rao lower bound, we have that g(θ) = 1/θ, so that g′(θ) = −θ−2, so

that:

VarRao = I(θ)−1(g′(θ))2 =
θ2

3
θ−4 =

1

3θ2
= Var(µ̂)

2. Consider this time the sample X = {Xi}ni=1 of i.i.d. random variables with probability density function:

f(x; θ) =

{
exp−(x− θ), x ≥ θ

0 otherwise

where θ > 0 is the parameter of the distribution.

(a) [7pt] Find a maximum likelihood estimator (MLE) of θ.
Solution:
The likelihood function

lik(X1, . . . , Xn; θ) = exp

{
−(

n∑
i=1

Xi − nθ)

}
1min(X1,...,Xn)>θ

is an increasing function for any θ less than or equal to min(X1, . . . , Xn), and it is zero for θ >
min(X1, . . . , Xn). As a result, the MLE:

θ̂MLE = min(X1, . . . , Xn) = X(1)

.

(b) [3pt] Modify the MLE to get an unbiased estimator of θ.
Solution:
The order statistic density with k = 1 shows that X(1) − θ ∼ Exp(n) [look for instance Example 3.7.1],
so that:

E(θ̂MLE) = E(X(1)) = θ + 1/n

Therefore, θ̂MLE − 1/n is unbiased.

(c) [6pt] Find a method of moments estimator (MOM) of θ.
Solution:
Let Y = X − θ. Then Y ∼ Exp(1) and E(Y ) = E(X)− θ. Since E(Y ) = 1, we have E(X) = 1 + θ and

θ̂MOM = X̄ − 1

(d) [4pt] Calculate the mean squared error (MSE) of θ̂MOM .
Solution:
We have that E(θ̂MOM ) = 1 + θ − 1 = θ. Moreover:

Var(θ̂MOM ) = Var(X̄ − 1) = Var(X̄) = 1/n.

Hence:
MSE((θ̂MOM ) = 0 + 1/n = 1/n
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3. Let X1 = {X1,1, X1,2, . . . , X1,n1
} be a random sample of size n1 of i.i.d observations Xi ∼ N(µ1, σ

2
1) and

X2 = {X2,1, X2,2, . . . , X2,n2
} a random sample of size n2 of i.i.d. observationsXi ∼ N(µ2, σ

2
2). The parameters

µ1 and µ2 are unknown while σ2
1 and σ2

2 are known. Due to logistical constraints, suppose that it is only
possible to select a total sample size ofN from these two normal populations, so that the constraint n1+n2 = N
holds.

(a) [15pt] Subject to this sample size constraint, find expressions (as a function of σ1, σ2 and N) for the
optimal values n?1 and n?2 of n1 and n2 that maximize the power of a size α test:{

H0 : µ1 = µ2,
H1 : µ1 > µ2

using as a test statistic the difference of the sample means X̄1 and X̄2, where X̄1 := 1
n1

∑n1

i=1X1,i,

X̄2 := 1
n2

∑n2

i=1X2,i. Provide an interpretation for your findings.
Solution:
Under the H0, the random variable:

X̄1 − X̄2√
σ2
1

n1
+

σ2
2

n2

∼ N(0, 1)

If we denote with z(α) the quantile such that:

P(Z > z(α)) = α

when Z ∼ N(0, 1), it follows that:

π = P

 X̄1 − X̄2√
σ2
1

n1
+

σ2
2

n2

> z(α)|H1


= P

 X̄1 − X̄2√
σ2
1

n1
+

σ2
2

n2

> z(α)|µ1 > µ2


= P

X̄1 − X̄2 − (µ1 − µ2)√
σ2
1

n1
+

σ2
2

n2

> z(α)− (µ1 − µ2)√
σ2
1

n1
+

σ2
2

n2

|H1


= P

Z > z(α)− (µ1 − µ2)√
σ2
1

n1
+

σ2
2

n2

|µ1 > µ2


= 1− Φ

(
z(α)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

)

Thus, in order to maximize the power π, we need to minimize the quantity
σ2
1

n1
+

σ2
2

n2
with the constraint

n1 + n2 = N . One possible solution is via the method of Lagrange multipliers. We consider:

L =
σ2
1

n1
+
σ2
2

n2
+ λ(n1 + n2 −N)

Hence, ∂Q
∂n1

= −σ2
1n
−2
1 + λ = 0, ∂Q

∂n2
= −σ2

2n
−2
2 + λ = 0 and ∂Q

∂λ = n1 + n2 −N = 0. From the first two
equations we have:

n1
n2

=
σ1
σ2

From the third equations we have: (
1 +

σ1
σ2

)
n1 =

σ1
σ2
N

so that n?1 = ( σ1

σ1+σ2
)N and n?2 = ( σ2

σ1+σ2
)N .
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(b) [5pt] If N = 100, σ2
1 = 4 and σ2

2 = 9, find the numerical values of n?1 and n?2.
Solution:
n?1 = 40 and n?2 = 60.

4. AZT was the first antiretroviral drug approved by the American Food and Drug Administration (FDA) in
order to reduce the viral load in HIV–positive patients. The standard AZT’s daily dose is 300mg. A study
claims that higher daily dose of AZT are not more beneficial, since several side effects may occur. In order
to verify the hypothesis that a daily dose of 600mg has the same efficiency of the 300mg dose, levels of p24
antigen were measured for two groups of patients: the first treated with 300mg of AZT and the second with
600mg. High levels of p24 indicate high viral replication. The results are contained in the following table:

Dose p24 antigen levels measured

300 mg 283, 284, 285, 286, 288, 289, 291, 295, 303
600 mg 287, 292, 293, 296, 298, 310, 314

(a) [10pt]. Test the hypothesis that the two doses have the same effect in controlling the disease against the
hypothesis that the two doses do not have the same effect in controlling the disease at the significance
level α = 0.01. Does the conclusion change if α = 0.10?
Solution:
Since we do not have any information about the distribution of the data, we perform a nonparametric
two–sided Mann Whitney test. In order to use Table 8 of the textbook: we have n1 = 7, R = 80,
R′ = 39, R? = min(80, 39) = 39. From Table 8, the critical value Rcr for R? with α = 0.01 is 35. Hence,
we do not reject the null hypothesis of no difference at 0.01 level of significance. For α = 0.10, Rcr = 43
so that the test rejects H0 at 0.10 level of significance.

(b) [10pt] Let us assume now that the measurements of p24 antigen come from two independent samples,
normally distributed and with equal variances. With this additional information, perform the test of
point a) at α = 0.05 level of significance.
Solution:
Since the two samples are two independent normal samples {X1. . . . , X9} and {Y1. . . . , Y7} with equal
variance, we can perform a two–sided t test with α = 0.05. We reject H0 whenever

T = |X̄ − Ȳ2|/
√
S2
p(1/n+ 1/m) > t14(0.975) = 2.145.

We have: x̄ = 289.33, x̄ = 298.57, s2p = 64.70, so that T = 2.279 > 2.145. Therefore, we reject H0 at
α = 0.05.

5. Consider two simple linear regression models. The first one has xi as independent variables and Yi as its
dependent variable, i.e.:

Yi = β0 + β1xi + εi, i = 1, 2, . . . n,

with εi i.i.d. random variables such that E(εi) = 0.
The second model uses x̃i = (xi − a)/b as its independent variable, and Ỹi = (Yi − c)/d as its dependent
variable, where a, b, c and d are known, non–zero and fixed constants, i.e.:

Ỹi = β̃0 + β̃1x̃i + ε̃i, i = 1, 2, . . . n

with ε̃i i.i.d. random variables such that E(ε̃i) = 0.

(a) [10pt]. What is the relationship between the least squares estimators of (β0, β1) in the first model and
the least squares estimators of (β̃0, β̃1) in the second model?
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Solution:
We have:

¯̃x =
1

n

n∑
i=1

x̃i =
1

bn

n∑
i=1

(xi − a) =
x̄− a
b

and
¯̃y =

ȳ − c
d

.

Moreover:

Sx̃x̃ =
∑
i

(x̃i − ¯̃xi)
2 =

∑
i

(xi − a
b
− x̄i − a

b

)2
=

1

b2
Sxx

and similarly:

Sx̃ỹ =
1

bd
Sxy

Thus,
ˆ̃
β1 =

Sx̃ỹ
Sx̃x̃

=
Sxy/(bd)

Sxx/b2
=
b

d

Sxy
Sxx

=
b

d
β̂1

and
ˆ̃
β0 = ¯̃y − ˆ̃

β1 ¯̃x =
ȳ − c
d
− b

d
β̂1
x̄− a
b

=
ȳ − c
d
− β̂1(x̄− a)

d
=

1

d
(β̂0 − c+ aβ̂1)

6. Consider the multivariate regression model Y = Xβ + e, where X is the design matrix of dimensions n× p,
and where the components ei of the vector e are i.i.d. random variables with E(ei) = 0 and Var(ei) = σ2. As

you know from the lectures, the least squares estimator of β is given by β̂ = (X>X)−1X>Y. Consider the
projector matrix P := X(X>X)−1X> and the matrix R := In − P, where In is the n -dimensional identity
matrix.

(a) [10pt] Let Ŷ = Xβ̂ and the residual vector ê = Y− Ŷ. Show that Ŷ = Pe + Xβ, that ê = Re and that PR
is the zero matrix.
Solution:

Ŷ = Xβ̂ = X(X>X)−1X>Y = PY = Pe + Xβ;

ê = Y − Ŷ = Y −Xβ̂ = Y −X(X>X)−1X>Y = (1−P)Y = RY = R(Y −Xβ) = Re,

since PXβ = Xβ;
PR = P(1−P) = P = P2 = P−P = 0
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