Statistiek (WISB263)

Final Exam

January 30, 2017

Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.

(The exam is an *open-book* exam: notes and book are allowed. The scientific calculator is allowed as well).

The maximum number of points is 100.

Points distribution: 25-20-30-25

1. Given two parameters a > 0 and k > 0, let $\mathbf{X} = \{X_1, \dots, X_n\}$ be a random sample of n i.i.d. observations sampled from the random variable X with density function:

$$f_X(x; a, k) \coloneqq \begin{cases} k e^{-k(x-a)} & x \ge a, \\ 0 & x < a \end{cases}$$

- (a) (8pt) Find sufficient statistics for a, k and for the couple (a, k).
- (b) (5pt) Determine, in case it exists, the maximum likelihood estimator of a in case k is known.
- (c) (5pt) Determine, in case it exists, the maximum likelihood estimator of k in case a is known.
- (d) (7pt) Determine, in case it exists, the maximum likelihood estimator of the couple (a, k).
- 2. We consider the following three random samples of size 100:

$$X_i := \{X_{i,1}, X_{i,2}, \dots X_{i,100}\},\$$

with $i \in \{1, 2, 3\}$. Each sample X_i consists of i.i.d. normal random variables, such that $X_{i,j} \sim N(50, \sigma_i^2)$ for any $j \in \{1, ..., 100\}$. Moreover the samples are independent (i.e. $X_{i,j} \perp X_{\ell m}$, for any $i \neq \ell$). We want to test:

$$\left\{ \begin{array}{ll} H_0: & \sigma_1^2=\sigma_2^2=\sigma_3^2, \\ H_1: & \text{the variances are not equal.} \end{array} \right.$$

(a) [10pt] Show that the Generalized Likelihood Ratio Test (GLRT) statistic Λ is such that:

$$-2\log \Lambda = 300\log \left(\frac{1}{3}\sum_{i=1}^{3}s_i^2\right) - 100\sum_{i=1}^{3}\log s_i^2$$

where $s_i^2 := 1/100 \sum_{j=1}^{100} (X_{i,j} - 50)^2$, with $i \in \{1, 2, 3\}$.

(b) [10pt] If the collected data $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,100}\}$, with $i \in \{1, 2, 3\}$, are such that:

$$\textstyle \sum_{j=1}^{100} x_{1,j} = 5040, \qquad \textstyle \sum_{j=1}^{100} x_{2,j} = 4890, \qquad \textstyle \sum_{j=1}^{100} x_{3,j} = 4920,$$

$$\textstyle \sum_{j=1}^{100} x_{1,j}^2 = 264200, \quad \sum_{j=1}^{100} x_{2,j}^2 = 250000, \quad \sum_{j=1}^{100} x_{2,j}^2 = 251700$$

perform a GLRT at $\alpha = 0.05$ level of significance (you can consider the sample size n = 100 large enough for applying large sample results).

3. The life times (in hours) of n=30 batteries have been measured from a company interested in the performances of a new product. In this way, a sample $\mathbb{X}=\{X_1,\ldots X_{30}\}$ of i.i.d. random variable X_j , representing the life time of the j-th battery, has been collected. In the following table the empirical cumulative distribution function $\hat{F}_{30}(x)$ (i.e. $\hat{F}_n(x)=1/n\sum_{j=1}^n\mathbf{1}(X_j\leq x)$) is reported:

x (in hours)	1	2	4	6	8	11	13	27	29	42
$\hat{F}_{30}(x)$	7/30	12/30	16/30	20/30	23/30	26/30	27/30	28/30	29/30	1

- (a) [6pt] Determine an estimator of the probability that the battery produced lasts more than 9 hours (i.e. $\mathbb{P}(X > 9)$).
- (b) [8pt] Derive an approximated 95% confidence interval for the probability that the battery produced lasts more than 9 hours.

Due to previous statistical analyses performed on similar batteries, we can assume now that the sample is a collection of 30 i.i.d. exponential random variable with expected value θ (i.e. $X_i \sim \text{Exp}(1/\theta)$).

- (c) [8pt] Under these parametric assumptions, calculate the maximum likelihood estimator of the probability that the battery produced lasts more than 9 hours.
- (d) [8pt] If we denote with $p(\theta)$ the probability that the battery produced lasts more than 9 hours, propose a test for testing the hypotheses:

$$\begin{cases} H_0: & p = 0.32 \\ H_1: & p = 0.16. \end{cases}$$

at the α level of significance.

4. Let the independent random variables Y_1, Y_2, \ldots, Y_n be such that we have the following linear model:

$$Y_i = \alpha + \beta x_i + \epsilon_i$$

for i = 1, ..., n, where ϵ_i are i.i.d. normal random variables such that $\epsilon_i \sim N(0, \sigma^2)$. Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ be the model in the matrix formalism. After we collected a sample of size n = 42, we have that:

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \begin{pmatrix} 0.03 & -0.015 \\ -0.015 & 0.04 \end{pmatrix}$$

Furthermore, we know that the least squares estimate is $\hat{\boldsymbol{\beta}}^{\top} = (\hat{\beta}_0, \hat{\beta}_1) = (1.90, 0.65)$ and that the residual sum of squares $\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2 = 160$.

- (a) [8pt] Compute the 95% confidence intervals for β_0 and β_1
- (b) [10pt] Consider the test:

$$\begin{cases} H_0: & \beta_0 = 2, \\ H_1: & \beta_0 \neq 2. \end{cases}$$

Will H_0 be rejected at a significance level of 5%? And at a significance level of 1%?

(c) [7pt] Under the previous H_0 , it holds that $\mathbb{P}(\hat{\beta}_0 > 1.90) = 0.61$ and that $\mathbb{P}(\hat{\beta}_0 < 1.90) = 0.39$. For which values of the significance level α , the null hypothesis H_0 will be rejected with the given data?

2