JUSTIFY YOUR ANSWERS

Allowed: calculator, material handed out in class and handwritten notes (your handwriting). NO BOOK IS ALLOWED

NOTE:

- The test consists of six exercises for a total of 12 credits.
- The score is computed by adding all the valid credits up to a maximum of 10.

Exercise 1. Prove the following:

- (a) (0.5 pts.) If X has an exponential distribution with rate λ and a > 0, then Y = aX has an exponential distribution of rate λ/a .
- (b) (0.5 pts.) If X_1, X_2, \ldots, X_k are independent random variables with Gamma distributions with parameters $(n_1, \lambda), (n_2, \lambda), \ldots, (n_k, \lambda)$, then their sum $Y = X_1 + X_2 + \cdots + X_k$ has a Gamma law with parameters $(n_1 + n_2 + \cdots + n_k, \lambda)$.

Exercise 2. Consider a branching process with offspring number with mean μ and variance σ^2 . That means, a sequence of random variables $(X_n)_{n\geq 0}$ with $X_0=1$ and

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i \qquad n \ge 1$$

where Z_n are iid random variables (offspring distribution) independent of the (X_n) with mean μ and variance σ^2 .

- (a) (1 pt.) Show that $E(X_n) = \mu^n$. [Hint: Start by showing that $E(X_n) = \mu E(X_{n-1})$.]
- (b) (1 pt.) Show that the variances of the process satisfy the recursive equation

$$\operatorname{Var}(X_n) = \mu^{n-1}\sigma^2 + \mu^2 \operatorname{Var}(X_{n-1}).$$

Exercise 3. (1pt.) Consider a Markov processes started in the invariant (or stationary) measure. If this measure is reversible, prove that the probability of visiting the states (letters) $x_1, x - 2, ..., x_n$ in that order is equal to the probability of visiting them in the opposite order.

Exercise 4. Let X_1 , X_2 and X_3 be independent exponential random variables with respective rates λ_1 , λ_2 and λ_3 . Compute:

- (a) $(0.7 \text{ pts.}) E(X_1 + X_2 \mid X_1 < X_2).$
- (b) (0.7 pts.) $E(X_2 \cdot X_3 \mid X_2 < X_3)$.

(c) (0.7 pts.)
$$E(X_2 \mid X_1 < X_2 < X_3)$$
.

Problem 5. Two clerks handle packages at a distribution center. Their processing times are independent and identically distributed, each following an exponential law of rate μ . Packages are processed on a first-come first-serve basis as soon as a clerk becomes free.

- (a) A package P_3 arrives and finds both clerks busy processing packages P_1 and P_2 . Denote W the waiting time of package P_3 until a clerk becomes free, T_P its processing time once accepted by a clerk, and $T = W + T_P$ the total time elapsed between the arrival of the package P_3 and the completion of its processing.
 - -i- (1 pt.) Determine the law of W.
 - -ii- (1 pt.) Prove that $E(T) = 3/(2\mu)$.
- (b) Packages arrive independently, exponentially at rate λ and wait in line till the first clerck becomes available.
 - -i- (0.6 pts.) Write the number of packages present as a birth-and-death chain, that is, determine the birth rates λ_n and death rates μ_n .
 - -ii- (1 pt.) Determine the mean time needed for having three packages present.
 - -iii- (1 pt.) Determine the limiting probabilities P_i , $i \geq 0$. Under which condition do these probabilities exist?
 - -iv- (0.3 pts.) Show that if $\lambda = \mu$, in the long run there is at least one server idle 2/3 of the time.

Exercise 6. (1 pt.) Let $(\pi_i)_{0 \le i \le n}$ be the invariant measure for the discrete-time Markov process on $S = \{0, 1, \dots, n\}$ defined by a matrix $(P_{ij})_{0 \le i, j \le n}$ with $P_{ii} = 0$. Prove that the measure

$$P_i = \frac{\pi_i/\nu_i}{\sum_j \pi_j/\nu_j} \qquad 0 \le i \le n$$

is then invariant for the continuous-time Markov chain with state space S, jump rates ν_i and transition probabilities P_{ij} , $0 \le i, j \le n$.