Stochastic Processes (WISB 362) - Final Exam

Sjoerd Dirksen

June 25, 2019, 13:30-16:30

Question 1 [4 points]

Recall that a random variable X with values in $\{0, ..., n\}$ has a binomial distribution with parameters (n, p), where $n \in \mathbb{N} \cup \{0\}$ and $0 \le p \le 1$, if

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \qquad k = 0, \dots, n.$$

Compute the probability generating function of X. Use this to show that the sum of two independent, binomially distributed random variables with parameters (n_1, p) and (n_2, p) is binomially distributed with parameters $(n_1 + n_2, p)$.

Question 2 [14 points]

Consider a Markov chain with state space {0, 1, 2, 3, 4, 5, 6} and transition probability matrix

- (a) (3 points) Draw a transition diagram, identify the communicating classes, and determine which classes are closed.
- (b) (2 points) Determine for each state whether it is recurrent or transient.
- (c) (2 points) Determine the period of each state.
- (d) (7 points) Compute $\lim_{n\to\infty} p_{01}(n)$.

Hint: what happens during the first time step?

Question 3 [6 points]

Consider a Markov chain with state space I and let $J \subset I$. Consider the random times $(T_m)_{m>0}$ defined by

$$T_0 = \inf\{n \ge 0 : X_n \in J\}$$

and for $m \ge 1$

$$T_m = \inf\{n > T_{m-1} : X_n \in J\}.$$

Suppose that $\mathbb{P}(T_m < \infty) = 1$ for all $m \geq 0$. Consider the stochastic process $(Y_m)_{m \geq 0}$ defined by $Y_m = X_{T_m}$. Show that this process is a Markov chain with state space J and transition probabilities $(q_{ij})_{i,j \in J}$, where

$$q_{ij} = \mathbb{P}_i(X_{T_1} = j), \quad i, j \in I.$$

Question 4 [8 points]

Cars are passing by a gas station according to a Poisson process with rate λ per hour. Assume that each car, independently of all other cars, stops to refuel with probability p.

- (a) (4 points) Let Y_t be the number of cars that has stopped at the gas station before time t. Show that $(Y_t)_{t\geq 0}$ is a Poisson process with rate λp .
- (b) (4 points) Let $\lambda = 6$ and $p = \frac{1}{3}$. The gas station opens at 09:00. A company official visits the gas station at 09:30 and finds that the station has served three customers. The official will return to the station at 10:00 and at 11:00. What is the probability that the station will have served at least eight customers at 10:00 and exactly ten customers at 11:00?

Question 5 [4 points]

Determine for each of the statements below whether it is true or false and give a solid motivation for your answer.

- (a) (2 points) If C is a closed communicating class of a Markov chain, then it is recurrent.
- (b) (2 points) Let $(X_t)_{t\geq 0}$ be a birth process with rates $(q_j)_{j\geq 0}$. If the process explodes in a finite amount of time, then the rates q_j must grow at least as fast as e^{cj} for some constant c>0, i.e., for some c>0,

$$\lim_{j \to \infty} \frac{e^{cj}}{q_j} = 0.$$

Some important probability distributions

Discrete distributions

Name	Probability mass function	
Bernoulli(p)	$\mathbb{P}(X=a) = p = 1 - \mathbb{P}(X=b)$	
Binomial(n, p)	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k},$	$k = 0, \dots, n$
Geometric(p)	$\mathbb{P}(X=k) = (1-p)^{k-1}p,$	$k \in \mathbb{N}$
$Poisson(\lambda)$	$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!},$	$k \in \mathbb{N} \cup \{0\}$

Continuous distributions

Name	Probability density function	
Uniform (a, b)	$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$	
Exponential (λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$	
$Normal(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(x-\mu)^2/(2\sigma^2))$	