Boedapestlaan 6

3584 CD Utrecht

Hertentamen Inleiding Financiele Wiskunde, 2011-12

- 1. Consider a 2-period binomial model with $S_0 = 20$, u = 1.3, d = 0.9, and r = 0.1. Suppose the real probability measure P satisfies $P(H) = p = \frac{1}{3} = 1 P(T)$.
 - (a) Consider an Asian European option with payoff $V_2 = ((S_1 + S_2)/2 20)^+$. Determine the price V_n at time n = 0, 1.
 - (b) Suppose $\omega_1\omega_2 = HT$, find the values of the portfolio process $\Delta_0, \Delta_1(T)$ so that the corresponding wealth process satisfies $X_0 = V_0$ (your answer in part (a)) and $X_2(TH) = V_2(TH)$.
 - (c) Consider the utility function $U(x) = 4x^{1/4}$ (x > 0). Show that the random variable $X = X_2$ (which is a function of the two coin tosses) that maximizes E(U(X)) subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^2}\right) = X_0$ is given by

$$X = X_2 = \frac{(1.1)^2 X_0}{Z^{4/3} E(Z^{-1/3})}.$$

- (d) Consider part (c) and assume $X_0 = 20$. Determine the value of the optimal portfolio process $\{\Delta_0, \Delta_1\}$ and the value of the corresponding wealth process $\{X_0, X_1, X_2\}$.
- (e) Consider now an Asian American put option with expiration N=2, and intrinsic value $G_n=20-\frac{S_0+\cdots+S_n}{n+1}$, n=0,1,2. Determine the price V_n at time n=0,1 of the American option. Find the optimal exercise time $\tau^*(\omega_1\omega_2)$ for all $\omega_1\omega_2$.
- 2. Consider a 3-period (non constant interest rate) binomial model with interest rate process R_0, R_1, R_2 defined by

$$R_0 = 0, R_1(\omega_1) = .05 + .01H_1(\omega_1), R_2(\omega_1, \omega_2) = .05 + .01H_2(\omega_1, \omega_2)$$

where $H_i(\omega_1, \dots, \omega_i)$ equals the number of heads appearing in the first i coin tosses $\omega_1, \dots, \omega_i$. Suppose that the risk neutral measure is given by $\widetilde{P}(HHH) = \widetilde{P}(HHT) = 1/8$, $\widetilde{P}(HTH) = \widetilde{P}(THH) = \widetilde{P}(THH) = 1/12$, $\widetilde{P}(HTT) = 1/6$, $\widetilde{P}(TTH) = 1/9$, $\widetilde{P}(TTT) = 2/9$.

- (a) Calculate $B_{1,2}$ and $B_{1,3}$, the time one price of a zero coupon maturing at time two and three respectively.
- (b) Consider a 3-period interest rate swap. Find the 3-period swap rate SR_3 , i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
- (c) Consider a 3-period floor that makes payments $F_n = (.055 R_{n-1})^+$ at time n = 1, 2, 3. Find Floor₃, the price of this floor.
- 3. Consider the binomial model with $u = 2^1$, $d = 2^{-1}$, and r = 1/4, and consider a perpetual American put option with $S_0 = 20$ and K = 24. Suppose that jack and Jill each buy such an option
 - (a) Suppose that Jill uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0?
 - (b) Suppose that Bob uses the strategy of exercising the first time the price reaches 1.25 euros. What should then the price be at time 0?
 - (c) What is the probability that the price reaches 80 euros for the first time at time n = 5?
- 4. Consider a random walk M_0, M_1, \cdots with probability p for an up step and q = 1 p for a down step, $0 . For <math>a \in \mathbb{R}$ and b > 1, define $S_n^a = b^{-n} 2^{aM_n}$, $n = 0, 1, 2, \cdots$.
 - (a) For which values of a is the process S_0^a, S_1^a, \cdots a (i) martingale, (ii) supermartingale, (iii) submartingale?
 - (b) Show that the process S_0^a, S_1^a, \cdots is a Markov Process.
 - (c) Suppose now that p = 1/2, so M_0, M_1, \dots , is the symmetric random walk. Let $\tau_m = \inf\{n \geq 0 : M_n = m\}$. Determine the value of $E(S_{\tau_m}^a)$.