JUSTIFY YOUR ANSWERS

Allowed material: calculator, material handed out in class and handwritten notes (your handwriting). NO BOOK IS ALLOWED

NOTE: The test consists of four problems plus a bonus problem for a total of 12 points. The score is computed by adding all the credits up to a maximum of 10

Exercise 1. [Coupon bond] Consider a coupon bond with face value F and maturity equal to N years, paying a coupon C at the end of each year. The effective yearly interest rate is r.

(a) (0.5 pts.) Show that the price of such bond is

$$V_0 = \frac{C}{r} \left[1 - \left(\frac{1}{1+r} \right)^N \right] + \frac{F}{(1+r)^N} .$$

(b) (0.5 pts.) An investor purchases the bond but decides to sell it immediately after having received the k-th coupon. Find the selling price.

Exercise 2. [Replication with selling fee and interest spread] Two scenarios are foreseen for a certain stock after one period: one in which the stock value is 110 E and another in which the value is 90E. Its current value is $S_0 = 100$ E. Furthermore:

- Each operation of selling the stock to the market carries a fee of 2% (there is no fee to buy from the market).
- Borrowing money costs 12% and deposits pay only 8%.

A call option is established at a strike price also equal to 100E. Determine:

- (a) (0.8 pts.) The risk-neutral probability.
- (b) (0.8 pts.) The fair price of the option.
- (c) (0.8 pts.) The hedging strategy.

Exercise 3. [Filtrations and (non-)stopping times] Two numbers are randomly generated by a computer. The only possible outcomes are the numbers 1, 2 or 3. The corresponding sample space is $\Omega_2 = \{(\omega_1, \omega_2) : \omega_i \in \{1, 2, 3\}\}$. Consider the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2$, where \mathcal{F}_0 is formed only by the empty set and Ω_2 , \mathcal{F}_1 formed by all events depending only on the first number, and \mathcal{F}_2 all events in Ω_2 (this is the ternary version of the two-period binary scenario discussed in class).

- (a) (0.8 pts.) List all the events forming \mathcal{F}_1 .
- (b) (0.8 pts.) Let $\tau: \Omega_2 \longrightarrow \mathbb{N} \cup \{\infty\}$ defined as the "last outcome equal to 3". That is, $\tau(3, \omega_2) = 1$ if $\omega_2 \neq 3$, $\tau(\omega_1, 3) = 2$ for all ω_1 , and $\tau = \infty$ if no 3 shows up. Prove that τ is *not* a stopping time with respect to the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2$.

Exercise 4. [Put options] Consider a stock with initial price S_0 following a binomial model with u = 2 and d = 1/2. That is, at the end of each period, the price can either double or be halved. Bank interest is 25% for each period. A producer will have the stock available at the end of two periods and wishes to sell it for at least S_0 at that time.

- (a) (2pts.) The producer is offered three possibilities:
 - (O1) A forward selling contract
 - (O2) An European put option
 - (O3) An American put option with intrinsic value $G(S) = S_0 S$.

Compute the fair initial price of each of the possibilities.

- (b) The investor purchases the American option.
 - -i- (1 pt.) Establish the optimal exercise time τ^* for the investor.
 - -ii- (1 pt.) Verify the validity of the formula

Value of the American option
$$= \widetilde{\mathbb{E}}\left[\mathbb{I}_{\{\tau^* \leq N\}} \frac{G_{\tau^*}}{(1+r)^{\tau^*}}\right]$$
.

-iii- (1 pt.) Show that the discounted values \overline{V}_n do not form a martingale, but the stopped discounted values $\overline{V}_n^{\tau^*}$ do.

Bonus problem

Bonus. [Dividend-paying stock] (2 pts.) Consider the general binary (not necessarily binomial) dividend-paying stock model. The model is defined by stock prices S_n and growth factors R_n , n = 0, ..., N. At the end of each period, after the new stock value is attained, a dividend is paid and the stock price is reduced by the corresponding amount Formally, these operations are described by the following adapted non-negative random variables

(a) $Y_n(\omega_1, \ldots, \omega_n)$ representing the percentual change in stock value from time t_{n-1}^+ to t_n^- , that is, before paying dividend at t_n . Hence, the stock value at t_n^- is

$$S_n^- = Y_n S_{n-1} .$$

(b) $A_n(\omega_1,\ldots,\omega_n)$ representing the percent of the t_n^- -value of the stock paid as a dividend at t_n^+ . Thus,

$$S_n = (1 - A_n) Y_n S_{n-1}$$
.

If the financial institution adopts hedging strategies Δ_n , the wealth equation for the values X_n of its portfolio becomes

$$X_{n+1} = \Delta_n Y_{n+1} S_n + R_n (X_n - \Delta_n S_n) .$$

Consider the risk-neutral measure defined by (omitting, as done in class, the overall dependence on $\omega_1, \ldots, \omega_n$)

$$\widetilde{p}_n = \frac{R_n S_n - S_{n+1}^-(T)}{S_{n+1}^-(H) - S_{n+1}^-(T)} = \frac{R_n - Y_{n+1}(T)}{Y_{n+1}(H) - Y_{n+1}(T)}.$$

Show the following:

- (a) (0.5 pts) $\widetilde{E}(Y_{n+1} | \mathcal{F}_n) = R_n$.
- (b) (0.5 pts) The discounted wealth process \overline{X}_n is a \widetilde{P} -martingale, whichever the hedging strategy.
- (c) (0.5 pts) The discounted stock price \overline{S}_n is not a \widetilde{P} -martingale, but only a \widetilde{P} -super-martingale.
- (d) (0.5 pts) In contrast, the process

$$\widehat{S}_n = \frac{\overline{S}_n}{(1 - A_1) \cdots (1 - A_n)}$$

is a martingale.