Mid-Term: Inleiding Financiele Wiskunde 2018-2019

- (1) Let X_1, X_2, \cdots be a sequence of independent identically distributed random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying $\mathbb{E}(X_n) = 0$ and $\mathbb{E}(X_n^2) = 1$, $n = 1, 2, \cdots$. Consider the filtration $\mathcal{F}(0) \subseteq \mathcal{F}(1) \subseteq \cdots$ with $\mathcal{F}(0) = \{\emptyset, \Omega\}$ and $\mathcal{F}(n) = \sigma(X_1, \dots, X_n), n = 1, 2, \dots$. For $n = 1, 2, \dots$, let $S_n = \sum_{i=1}^n X_i$ and $M_n = S_n^2 - n$. Set $M_0 = 0$.
 - (a) Prove that the stochastic process $\{M_n : n = 0, 1, \dots\}$ is adapted to the filtration $\{\mathcal{F}_n : n = 0, 1, \dots\}$ $0, 1, \cdots \}. (0.5 \text{ pts})$
 - (b) Prove that $\{M_n: n=0,1,\cdots\}$ is a martingale with respect to the filtration $\{\mathcal{F}_n: n=1,\cdots\}$ $0, 1, \dots \}$. (3 pts)
 - (c) Determine the value of $\mathbb{E}[M_n]$ for $n = 0, 1, \dots$ (0.5 pt)
- (2) In Homework 1, you have seen that if $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, $\{B_1, \dots, B_n\}$ a finite partition of Ω with $B_i \in \mathcal{F}$ for $i = 1, 2, \dots, n$ and $\mathcal{G} = \sigma(B_1, \dots, B_n)$ the σ -algebra generated by the partition $\{B_1, \dots, B_n\}$, then for any random variable X defined on $(\Omega, \mathcal{F}, \mathbb{P})$ one has

$$\mathbb{E}[X|\mathcal{G}] = \sum_{i=1}^n \frac{1}{\mathbb{P}(B_i)} \mathbb{I}_{B_i} \mathbb{E}[\mathbb{I}_{B_i} X].$$

Use this formula to show that if $X=\sum_{i=1}^n x_i\mathbb{I}_{\{X=x_i\}}$ and $Y=\sum_{j=1}^m y_i\mathbb{I}_{\{Y=y_j\}}$ are discrete random variables on $(\Omega,\mathcal{F},\mathbb{P})$ with values x_1,\cdots,x_n and y_1,\cdots,y_m respectively, then

$$\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma(Y)] = \sum_{j=1}^{m} \mathbb{I}_{\{Y=y_j\}} \sum_{i=1}^{n} x_i \mathbb{P}(X=x_i|Y=y_j|, Y=y_j|, Y=y$$

where

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{\mathbb{P}(\{X = x_i\} \cap \{Y = y_j\})}{P(\{Y = y_j\})}.$$

(2 pts)

- (3) Let $(W(t): t \ge 0)$ be a Brownian motion, and let $\{\mathcal{F}_t: t \ge 0\}$ be its natural filtration, i.e. $\mathcal{F}(t) = 0$ $\sigma(W(s):s\leq t)$. Consider the stochastic process $(X(t):t\geq 0)$ defined by $X(t)=e^{\mu c(t)+W(t)}$ with $\mu \neq 0$, and c(t) a (measurable) function satisfying $c(0) = \alpha$, with $\alpha \neq 0$ some given real number. Suppose we are told that the process $(X(t):t\geq 0)$ is a martingale with respect to the filtration $\{\mathcal{F}_t: t \geq 0\}$.
 - (a) Determine an explicit expression for c(t). (2 pt)
 - (b) Determine an expression for $\mathbb{P}(X(t) > e^{\mu \alpha})$, for t > 0. (2 pt)