Final Exam: Inleiding Financiele Wiskunde 2018-2019

(1) Consider a Brownian motion $\{W(t): t \geq 0\}$ with filtration $\{\mathcal{F}(t): t \geq 0\}$. Suppose that the price process $\{S(t): t \geq 0\}$ of a certain stock is modelled as the following Itô-process

$$S(t) = S(0) + \int_0^t \mu S(u) \, du + \int_0^t \sigma \, dW(u).$$

- (a) Use Itô-Doeblin formula to show that $e^{-\mu t}S(t) = S(0) + \int_0^t e^{-\mu u} \sigma \, dW(u)$. (1 pt)
- (b) Determine the distribution of S(t) and calculate $\mathbb{P}(S(t) < 0)$ for t > 0. (1 pt)
- (2) Let $\{(W_1(t), W_2(t)) : t \ge 0\}$ be a 2-dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider two price processes $\{S_1(t) : t \ge 0\}$ and $\{S_2(t) : t \ge 0\}$ with corresponding SDE given by

$$dS_1(t) = \alpha S_1(t) dW_1(t) + \beta S_1(t) dW_2(t) dS_2(t) = \gamma S_2(t) dt + \sigma S_2(t) dW_1(t),$$

where $\alpha, \beta, \gamma, \sigma$ are positive constants

- (a) Show that $\{S_1(t)S_2(t): t \ge 0\}$ is a 2-dimensional Itô-process, (1 pt)
- (b) Show that $\mathbb{E}[S_1(t)S_2(t)] = S_1(0)S_2(0)e^{(\gamma+\alpha\sigma)t}$, $t \ge 0$. (You are allowed to interchange integrals and expectations). (1 pt)
- (c) Consider a finite time T (expiration date), and suppose the interest rate is a constant, i.e. R(t) = r for all t > 0. Show that the market price equations have a unique solution, and determine the risk-neutral probability measure $\widetilde{\mathbb{P}}$ for the process $\{(S_1(t), S_2(t) : 0 \le t \le T\}$. (1.5 pt)
- (3) Let T fe finite horizon and let $\{W(t): 0 \le t \le T\}$ be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mu)$ with filtration $\{\mathcal{F}(t): 0 \le t \le T\}$, where $\mathcal{F}(T) = \mathcal{F}$. Suppose that the price process $\{S(t): 0 \le t \le T\}$ of a certain stock is given by

$$S(t) = \exp\left\{2W(t) + \frac{t^2}{2} - 2t\right\}$$

- (a) Show that $\{S(t): 0 \le t \le T\}$ is an Itô-process. (1 pt)
- (b) Let r be a constant interest rate. Find a probability measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} such that the discounted process $\{e^{-rt}S(t):0\leq t\leq T\}$ is a martingale under $\widetilde{\mathbb{P}}$. (1 pt)
- (4) Consider a Brownian motion $\{W(t): t \geq 0\}$ with the natural filtration $\{\mathcal{F}(t): t \geq 0\}$, where $\mathcal{F}(t) = \sigma(\{W(s): s \leq t\})$. Consider the stochastic process $\{M(t): t \geq 0\}$, with

$$M(t) = \left(\int_0^t sW^2(s) \, dW(s)\right)^2 - \int_0^t s^2 W^4(s) \, ds.$$

- (a) Determine the value of $\mathbb{E}[M(t)]$ for $t \geq 0$. (1 pt)
- (b) Prove that the stochastic process $\{M(t): t \geq 0\}$ is a martingale with respect to the natural filtration $\{\mathcal{F}(t): t \geq 0\}$. (1.5 pt)