Mastermath midterm examination Parallel Algorithms

Teacher: Rob H. Bisseling, Utrecht University
October 23, 2019

Each of the four questions is worth 10 points. Total time 120 minutes. Motivate you answers!

- 1. (a) [5 pt] Describe the superstep structure of a BSP algorithm.
 - (b) [5 pt] Give an example of a balanced 4-relation and an unbalanced 4-relation for 4 processors.
- 2. Let x be a bit vector of length n, i.e. $x_i \in \{0,1\}$ for $0 \le i < n$. We want to compute the *parity bit* of x, which is 0 if the total number of 1-bits is even and 1 if it is odd. (The parity bit is sometimes added to a bitstring to help detect a single-bit error.)
 - (a) [4 pt] Assume that the input vector \mathbf{x} is distributed by the block distribution over p processors with $n \mod p = 0$. Give an efficient BSP algorithm for processor P(s) for the computation of the parity bit of \mathbf{x} . Only processor P(0) needs to know the result.
 - (b) [3 pt] Analyse the BSP cost of your algorithm.
 - (c) [3 pt] Now assume that x is a long random bit string, where every bit has the same probability d > 0 of being 1 and hence 1 d of being 0. Can you optimise the communication in your algorithm to exploit this property? What is the expected gain in BSP cost?
- 3. Assume we have an $n \times n$ matrix A which is distributed by the square cyclic distribution with $p = M^2$ processors. Assume that $n \mod M = 0$. Let k, r be integers with $0 \le k < r < n$ and $\sigma : \{0, 1, \ldots, n-1\} \to \{0, 1, \ldots, n-1\}$ the permutation that swaps k and r.
 - (a) [1 pt] Give the matrix P_{σ} as defined for this permutation σ .

- (b) [2 pt] Describe the meaning of the matrix $P_{\sigma}AP_{\sigma}$.
- (c) [4 pt] Give an efficient BSP algorithm for processor P(s,t) for the transformation of the matrix A into $P_{\sigma}AP_{\sigma}$ on a BSP computer with a relatively high synchronisation cost. Use the notation we have learned to express algorithms.
- (d) [3 pt] Analyse the BSP cost of your algorithm.
- 4. Let A be a tall-and-skinny $n \times k$ matrix with $k \ll n$ and B a $k \times n$ matrix. Assume that we have $p = M^2$ processors, and that $n \mod M = 0$. Assume that A is available in processor column P(*,0), distributed by the block distribution over the M processors of the processor column. Assume that the matrix A is really skinny, with $k \ll M$. It is also really tall, with $n \gg M$. Similarly, assume that B is available in processor row P(0,*), also distributed by a block distribution over M processors.
 - (a) [6 pt] Design an efficient BSP algorithm for the computation of the matrix C = AB. The output may be distributed, using a distribution of your own choice. You can describe the algorithm in words (instead of using the full notation we learned).
 - (b) [4 pt] Analyse the BSP cost of your algorithm.