
Mastermath midterm examination
Parallel Algorithms. Solution

Teacher: Rob H. Bisseling, Utrecht University

October 21, 2020

1. (a) The algorithm for 2-superstep matrix multiplication is given as
Algorithm 1. The main idea is that the matrix element cij is
computed by

cij =
n−1∑
k=0

aikbkj,

where every processor computes the elements of cij for its own
block in superstep (1). To do this, all elements from row i of A
and column j of B are needed, and these are sent beforehand in
superstep (0).

Algorithm 1 Matrix multiplication for processor P (s, t)

input: A,B: n× n matrices, distr(A) = distr(B) = square block.
output: C: n× n matrix, C = AB, distr(C) = square block.

b = n/M ; . Superstep (0)
for i := sb to (s + 1)b− 1 do

for j := tb to (t + 1)b− 1 do
put aij in P (s, ∗);
put bij in P (∗, t);

. Superstep (1)
for i := sb to (s + 1)b− 1 do

for j := tb to (t + 1)b− 1 do
cij := 0;
for k := 0 to n− 1 do

cij := cij + aikbkj;

1



(b) The BSP cost of the algorithm is

Tmatmat =
2n3

p
+

2n2

p
(
√
p− 1)g + 2l,

because every one of the n2

p
local elements is sent to 2M − 2 other

processors in superstep (0), where all processors send and receive
the same number of data words, so h = 2n2

p
(M − 1). For every

local element, 2n flops are performed in superstep (1).

(c) Every processor needs to store its own block of b2 elements of the
output matrix C but also b complete rows of A and b complete
columns of B. Together this is 2bn + b2 = 2n2

√
p

+ n2

p
data words,

which is an increase of about a factor of
√
p compared to the input

size. If not enough memory is available, more supersteps should
be created by splitting the first superstep into sending parts of
rows/columns (such as a b× b block of A and a b× b block of B)
and by using these parts immediately in an update of a b×b block
of C.

2. (a) The algorithm for vector reduction is given as Algorithm 2. The
main idea is that processor P (s) computes a block x[sb : (s +
1)b − 1] of x, where b = k/p is the block size. To do this, it first
needs the block xt[sb : (s+1)b−1] from all processors P (t), which
is sent in superstep (0). The computed block is broadcast to all
processors in superstep (2). Note that this approach is similar
to two-phase broadcasting: the responsibility for computing x is
spread evenly over all the processors.

(b) The BSP cost of superstep (0) is k(p−1)
p

g + l, because every pro-

cessor sends k/p values to p − 1 others, and it receives the same
number of values. The cost of superstep (1) is k + l, because
every processor adds k/p values received from each of the p pro-

cessors. The BSP cost of superstep (2) is k(p−1)
p

g + l, the same as

for superstep (0). The total BSP cost of the algorithm is

Treduction = k +
2k(p− 1)

p
g + 3l ≈ k + 2kg + 3l.

3. (a) A possible solution algorithm is the following. Every processor has
a block of size b = n/p of the vectors x,y, z. To compute digits zi,
sb ≤ i < (s+ 1)b, processor P (s) first adds zi = xi + yi + ci, where
ci is the carry for index i. If this leads to zi ≥ r, we subtract r

2



Algorithm 2 Vector reduction for processor P (s)

input: P (s) has vector xs of length k.
output: P (s) has vector x of length k, with x[i] =

∑p−1
t=0 xt[i], for 0 ≤ i < k.

b = k/p; . Superstep (0)
for t = 0 to p− 1 do

for i := tb to (t + 1)b− 1 do
put xs[i] in P (t);

. Superstep (1)
for i := sb to (s + 1)b− 1 do

x[i] := 0;
for t = 0 to p− 1 do

x[i] = x[i] + xt[i];

. Superstep (2)
for t = 0 to p− 1 do

for i := sb to (s + 1)b− 1 do
put x[i] in P (t);

and define ci+1 = 1. Otherwise, zi is already in the right format
and we set ci+1 = 0. In the first instance, the processor disregards
carries from other processors. Note that each carry is either 0 or
1, which can easily be proven by induction. This process is the
initial computation superstep.

After that, the carry produced by the highest-indexed local digit
z(s+1)b−1 becomes the carry c(s+1)b to start with in P (s + 1), for
s < p − 1. This carry is sent from P (s) to P (s + 1). Then the
process of addition is performed again, but now just computing
zi := zi+ci, and only until a carry 0 is encountered. If for all local
elements zi = r − 1 holds (which for r = 10 is the all-9s case),
this will result in another carry being sent. The communication
superstep of sending these carries concludes round 0.

If any carries were sent, a new round is performed, consisting of
first a computation superstep that propagates a carry locally, and
then if needed a communication superstep that sends a carry to
the next processor.

At the end of round 0, processor P (0) is done, since it does not
receive a carry itself. This also means that P (1) will be done at the
end of round 1. At the end of round k, processors P (0), . . . , P (k)
will be done. Thus, in the worst case at the end of round p− 1 all

3



processors will be done and the algorithm terminates.

(b) This worst case can indeed happen: an example with r = 10 is the
very large integer x = 4444 · · · 445 and y = 4555 · · · 555 (in deci-
mal notation with x0 = 5), which first leads to z = 8999 · · · 9990,
and a carry c1 = 1; the single carry then propagates through all
blocks in p rounds. The cost for one round is b + g + 2l since b
additions are performed and at most one carry is sent or received
per processor. The first round has an extra b flops, for adding
allxi + yi. The cost of the worst case is therefore

Tworst = p(b + g + 2l) + b = n + n/p + pg + 2pl.

The worst case is in fact completely sequential, with only one
processor working at the same time, in all rounds except round 0.

In the random case, there will hardly ever be more than two
rounds. At the end of round 0, about half the processors will
have a carry, depending on their highest digit z(s+1)b−1. In round
1, the carries will propagate, but only in the all-9s case a new carry
must be communicated, which is highly unlikely. So the cost of
round 1 will probably be only a few additions. The expected cost
will thus be about 2n/p + g + 4l for the expected two rounds.

A subtle point is that we need a termination mechanism to detect
that all processors are done. We could incorporate this by letting
each processor broadcast whether it is active, meaning that it
sends a carry at the end of a round. If no processor is active, we
are done. This mechanism costs an extra (p − 1)g per round. It
is most likely invoked only once, in round 1. The total expected
cost for the random case is therefore

Trandom = 2n/p + (2p− 1)g + 4l.

This will also be the expected cost in the average case.

Note that other solution algorithms may also be possible, with dif-
ferent worst-case and random-case behaviour. For instance, a solu-
tion with only three supersteps can be obtained based on a broad-
cast to all processors of a pair of data, actives and propagates,
where propagates means that processor P (s) will propagate a carry
all the way (meaning all its components are r− 1). This informa-
tion enables every processor to complete the computation in the
computation superstep of round 1.

4


