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Question 1 {5pt) Let (S, Z, ) be a mensure space, let h € L1(S, Z, u) satisly i > 0, and let v: ¥ =+ R be the
measure given by v{A} = [, hdp.

(a) (3pt) Prove, using the ‘standard machinery’, that for all f € £1(S, £, v) it holds that
fhe LYS,E,p) and [ f(s)dv(s) = [ f(s)h(s)du(s).

(b) (2pt) Let ¢: & — R be a measure satisfying ¢ < v and Iet 2 he the Radon-Nikodym
derivative ol" q& with respect to v. Prove that qb << u and prove that; the Radon-Nikodym

derlvul.we — ol' ¢ with respect to p satlsﬁes = h4 =,

Question 2 (2pt) Let (0q)nen be a sequence in R satisfying lim,,_,m on = o, and let {Z,)en be a sequence
of random variables such that Z, ~ A(0,0,), n € N. Prove that there exists a random
variable Z, such that Z, = Z. and Z ~ N(0,0).

Question 3 {2pt) Let (2, F,P) be a probability space, (Fn)nen a filtration on F and (A, )nen and (F)nen-
martingale. Define G, = a(AM,, ..., M,), n € N. Prove that (M, }nen is a (Gn)nen marting-
ale.

Question 4 (7Tpt) Let {X,)nen be a sequence of i.id. random variables on a probability space (2, F,P) sa-
tisfying E(X}) = 1 and E(X;) = 0. Let (Fn)nen, be the filtration given by Fo = {8, F}
and, for n € N, F,, = o{X},..., X,). Let {Yo)nen be an (F,)nen,-predictable sequence of
integrable random variables. Define a stochastic process (Al )nen by setting Ay = 0 and,
forn € N, M, =3¢, YiXe.

{(a} (2pt) Prove that {Alp)nen, is an (Fy)nem,-martingale.
(b) (2pt) Prove that if EY;? < oo for all n € N, then E(Af},, = ¥ ¢_, EY?.
{c) (3pt)} Provide a condition & on (Y3 )aen such that

i. if a predictable process (Y, ).cn satisfies condition «, then there exists an M, €
LY, F,P) such that M, — My as. and in L.

ji. there exists a non-deterministic predicatable process (¥;)nen satisfying condition
o and satisfying P(Y, =0} < 1 forall n € N.

In particular, give an example of a non-deterministic predicatable process (Y3 )nen
satisfying condition a and satisfying P(Y;, =0) < 1 for all n € N.

Question 5 (dpt) Let (X )ien be a sequence of independent, identically distributed random variables satisfying
E(X:) = 0 and E(X?) = 1, and let 7 ~ Normal(0,1). Prove! that L 7, vV2k — LXy % v
as 1 — 00,

! Hint: the Lindebery condition for a doubly indexed sequence of random variables (€n,k)nen,kefl,.. .ny Fends
as follows: For all £ > 0 it holds that

n
uli-lotéokzlE:E;l-‘-'l[ Euk »e)l = 0.



