

Faculty of Science

Exam

Measure Theoretic Probability MasterMath course

Final Exam

Date: February 1st, 2017

Time: 14:00-17:00

Number of pages: 2 (including front page)

Number of questions: 5

Maximum number of points to earn: 20

At each question is indicated how many points it is worth.

BEFORE YOU START

- Please wait until you are instructed to open the booklet.
- · Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your mobile phone has to be switched off and in the coat or bag. Your coat and bag must be under your table.
- · Tools allowed: paper, pen, pencil, eraser.

PRACTICAL MATTERS

- The first 30 minutes and the last 15 minutes you are not allowed to leave the room, not even
 to visit the toilet.
- You are obliged to identify yourself at the request of the examiner (or his representative)
 with a proof of your enrollment or a valid ID.
- During the examination it is not permitted to visit the toilet, unless the proctor gives permission to do so.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, please fill out the evaluation form at the end of the exam.

Good luck!

Faculty of Science

Final exam MTP.

- Question 1 (5pt) Let (S, Σ, μ) be a measure space, let $h \in \mathcal{L}^1(S, \Sigma, \mu)$ satisfy $h \ge 0$, and let $\nu \colon \Sigma \to \mathbb{R}$ be the measure given by $\nu(A) = \int_A h \, d\mu$.
 - (a) (3pt) Prove, using the 'standard machinery', that for all $f \in \mathcal{L}^1(S, \Sigma, \nu)$ it holds that $fh \in \mathcal{L}^1(S, \Sigma, \mu)$ and $\int_S f(s) d\nu(s) = \int_S f(s)h(s) d\mu(s)$.
 - (b) (2pt) Let $\phi \colon \Sigma \to \mathbb{R}$ be a measure satisfying $\phi \ll \nu$ and let $\frac{d\phi}{d\nu}$ be the Radon-Nikodym derivative of ϕ with respect to ν . Prove that $\phi \ll \mu$ and prove that the Radon-Nikodym derivative $\frac{d\phi}{d\mu}$ of ϕ with respect to μ satisfies $\frac{d\phi}{d\mu} = h \frac{d\phi}{d\nu}$.
- Question 2 (2pt) Let $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} satisfying $\lim_{n\to\infty} \sigma_n = \sigma$, and let $(Z_n)_{n\in\mathbb{N}}$ be a sequence of random variables such that $Z_n \sim \mathcal{N}(0,\sigma_n)$, $n\in\mathbb{N}$. Prove that there exists a random variable Z_∞ such that $Z_n \stackrel{w}{\to} Z_\infty$ and $Z_\infty \sim \mathcal{N}(0,\sigma)$.
- Question 3 (2pt) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $(\mathcal{F}_n)_{n \in \mathbb{N}}$ a filtration on \mathcal{F} and $(M_n)_{n \in \mathbb{N}}$ and $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale. Define $\mathcal{G}_n = \sigma(M_1, \ldots, M_n), n \in \mathbb{N}$. Prove that $(M_n)_{n \in \mathbb{N}}$ is a $(\mathcal{G}_n)_{n \in \mathbb{N}}$ martingale.
- Question 4 (7pt) Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying $\mathbb{E}(X_1^2)=1$ and $\mathbb{E}(X_1)=0$. Let $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ be the filtration given by $\mathcal{F}_0=\{\emptyset, \mathcal{F}\}$ and, for $n\in\mathbb{N}$, $\mathcal{F}_n=\sigma(X_1,\ldots,X_n)$. Let $(Y_n)_{n\in\mathbb{N}}$ be an $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ -predictable sequence of integrable random variables. Define a stochastic process $(M_n)_{n\in\mathbb{N}}$ by setting $M_0=0$ and, for $n\in\mathbb{N}$, $M_n=\sum_{k=1}^n Y_k X_k$.
 - (a) (2pt) Prove that $(M_n)_{n\in\mathbb{N}_0}$ is an $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ -martingale.
 - (b) (2pt) Prove that if $\mathbb{E}Y_n^2 < \infty$ for all $n \in \mathbb{N}$, then $\mathbb{E}(M)_n = \sum_{k=1}^n \mathbb{E}Y_k^2$.
 - (c) (3pt) Provide a condition α on $(Y_n)_{n\in\mathbb{N}}$ such that
 - i. if a predictable process $(Y_n)_{n\in\mathbb{N}}$ satisfies condition α , then there exists an $M_{\infty}\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$ such that $M_n\to M_{\infty}$ a.s. and in L^1 .
 - ii. there exists a non-deterministic predicatable process $(Y_n)_{n\in\mathbb{N}}$ satisfying condition α and satisfying $\mathbb{P}(Y_n=0)<1$ for all $n\in\mathbb{N}$.

In particular, give an example of a non-deterministic predicatable process $(Y_n)_{n\in\mathbb{N}}$ satisfying condition α and satisfying $\mathbb{P}(Y_n=0)<1$ for all $n\in\mathbb{N}$.

Question 5 (4pt) Let $(X_k)_{k\in\mathbb{N}}$ be a sequence of independent, identically distributed random variables satisfying $\mathbb{E}(X_1)=0$ and $\mathbb{E}(X_1^2)=1$, and let $\gamma \sim \text{Normal}(0,1)$. Prove¹ that $\frac{1}{n}\sum_{k=1}^n \sqrt{2k-1}X_k \stackrel{\text{tw}}{\to} \gamma$ as $n\to\infty$.

$$\lim_{n\to\infty}\sum_{k=1}^n\mathbb{E}[\xi_{n,k}^21_{\{|\xi_{n,k}|>\varepsilon\}}]=0.$$

¹Hint: the Lindeberg condition for a doubly indexed sequence of random variables $(\xi_{n,k})_{n\in\mathbb{N},k\in\{1,\dots,n\}}$ reads as follows: For all $\varepsilon>0$ it holds that