UNIVERSITY OF AMSTERDAM
x

Faculty of Science

Measure Theoretic Probability

MasterMath course

Final Exam
Date: January 11th 2017
Time: 14:00-17:00

Number of pages: 2 (including front page)

Number of questions: 4

Maximum number of points to earn: 23

At each question is indicated how many points it is worth.

BEFORE YOU START
® Please wait until you are instructed to open the booklet.

Check if your version of the exam is complete.

Write down your name, student I} number, and if applicable the version number on
each sheet that you hand in. Also number the pages.

Your mobile phone has to be switched off and in the coat or bag. Your coat and bag
must be under your table.

Tools allowed: paper, pen, pencil, eraser.

PRACTICAL MATTERS

¢ The first 30 minutes and the last 15 minutes you are not allowed to leave the room, not even
to visit. the toilet.

» You are obliged to identify yourself at the request of the examiner (or his representative)
with a proof of your enrollment or a valid 1D.

® During the examination it is not permitted to visit the toilet, unless the proctor gives
permission to do so.

¢ 15 minutes before the end, you will be warned that the time to hand in is approaching,.

o Il applicable, please fill out the evaluation form at the end of the exam.

Good luck!



UNIVERSITY OF AMSTERDAM

Faculty of Science

Final exam MTP.

Question 1 (4pt) For two sets A, B we denote by AAB the symmetric difference of A and B, ie., AAB :=
(AUB)\ (AN B). Let B{(0,1)) := a({(a,b): a,b € [0,1],a < b}) be the Borel o-algebra
on (0,1) and let A: B((0, 1)) = R be the Lebesgue measure on B{(0,1)). Prove that for all
A € B((0,1)) it holds that for all ¢ > O thereexistsann € Nand ay, ..., an,b1,...,0s € [0,1]
satisfying ¢; < b < a3 < ... <byo1 < ap < b, such that MAAUE_ (ax, bp))) < e.

Question 2 (3pt) Let (2, F,P) be a probability space, let G C F be a o-algebra, and let X € LY, F,P).
Formulate (a version of) the Radon-Nikodym theorem and explain how it follows from this
theorem that there exists a unique Y € L'(Q, G, ) such that for all A € G it holds that
[ XdP = [, YdP.

Question 3 (12 pt) Let (Xi)ken be a sequence of independent, identically distributed random variables on a
probability space (Q,F,P) satisfying P(X; > 0) = 1, P(X, = 1) < 1, E(|In(X)]) < 20
and E(X)) = 1. Define, for all n € N, the o-algebra F;, = o(X),..., X,) and the random
variable Z,, = [i-, X&.

{a) (Ipt) Explain why E(In(X,)) <0.
(b) (ipt) Set ¢ = E{In(X,)). Prove that (Z,)* — € a.s. as n =+ o0

{¢) (1pt) Prove that if there exists an Af € R such that P(X, < Af) = 1, then (Z)* = c*
in L' as i — 00.

{(d) (2pt) Show that (Z,)nen is an (Fn)pen-martingale.
(e) (2pt) Show that there exists an Zo € L'(Q, F,P) such that Z, — Z as. as n — 0.
() (2pt) Prove that there exists an & > 0 such that P{Npen Umsn {1 Xm— 1| > €}) = L.

(g) (2pt) Prove that on {Z, > 0} it holds that limy_;00 Xy = I, and use this and part (N
to conclude that P(Z =0) = 1.

() (1pt) Is {Z,)new uniformly integrable? (Explain your answer.)

Question 4 (dpt} Let (Xy)ren be a sequence of independent, identically distributed random variables with
characteristic function ¢ For n € N let B, be a Bernoulli-(n, F]i) distributed! random
variable independent of (X )ren and let

0, B,=0;
Sp = B, .
Y ey Xk, otherwise.

(a) (2pt) Let ¢, denote the characteristic function of S, n € N. Prove that for all s € R
it holds that ¢,(s) = (1 o 2‘_,1'_‘) .

() (2pt) Explain? why there exists a random variable S, such that 5, % 8. and provide
the characteristic lunction of Sy;.

iThis means that for all k£ € {0,1,....n} it holds that P(By = k) = ([}n "in = 1}" k:

2Hint: for all = € C it holds that limp-, ol + )" = e*.
{u
W} - e
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Exercise 1:
Let P, be the property defined in the exercise: A C (0,1) satisfies P if and only if there exists
anc€Nand0<a; <b <...<an < by €1 such that A(AA (U(a;, b;))) < e. Using this,
define the collection:

A= {A C(0,1)|Ve: A satisfies P.}

Clearly, the exercise wants us to show that 5(0,1) C A. We will do this by showing that A is
a g—algebra which contains the generators (a,b) of 8(0,1). The usual argument shows then
that the whole of B(0, 1) is contained in A

» Let A = (a,b) be an element of the generating set of B(—1,1). Then, picking n = 1 and
a) = a, by = b shows that A(AA(e1,8,)) = AM0) =0 < ¢ for all e. Le., A satisfies P, for
all e and A € A.

e Let A = (0,1). Note that this is a special case of the previous point and hence (0,1) € A
o Let A € A. First note that for any set B C (0,1) we have that
AAB* = (ASUB )\ (A°NB°) = (ANB)*\(AUB)=(AUuB)\(ANnB)= AAB

Let € > 0 be given. As A € A it satisfies F.. Therefore, there exists B = {a;,b) U
...U{(an, by} such that A(AAB) < e. Note that the interior of B€ is given by (0,a;) U
(bi,e2) U ... U (bs,1) =: C and is of the form used in the definition of P.. As C
and B° only differ by a finite amount of points, which have measure zero, we get that
AMASAC) = A(A°AB®) = MAAB) < e. That is A® satisfies P, for all € and hence
Ac e A.

o Let A;, A € A, we will show that A := A; U A3 € A. Note that this is not enough to
show that A is a o—algebra, as it only proves finite unions, but we will use it to show
the same statement for a f:ou_ntnble union. Let € > 0 be given. As Aj, As € A, there
exist n; € N and B; = (af, b)) V... U (ak,, b},,) such that A(4;AB;) < § for i = 1,2.
Note that B := B; U Bs is also a finite union of open intervals. Now note:

AAB = (AU A2 U By UBy) \ ({41 VU A2) N (B U By))
C (Al UAUBU Bz) \ ((Al n B]) u (A2 n Bz))
C A1ABl U AgABz
Hence, we find that A(AAB) £ MA1AB)) + MA24B8;) < §+ § = e. We conclude
that A satisfies P, for all € and hence A € A. By using an induction argument, or just

redoing this proof with some more indices, we conclude that any finite union of sets of
A belong to A.

e Let A;, As,... € A and let A = U;A;. By replacing A; with (A§ U A;)¢, which lies is A4
by the previous two points, we can assume that all the A; are mutually disjoint. Now,
let € > 0 be given. As A C (0,1), we find that A(A) < A(0,1) = 1 and hence there exists
a N € N such that AM(A® := U2y 4;) < §. Also, by the previous point, we realize that
AN := UN=1A; € A and hence there exists a n € N and B = (a1, 5,)U. ..U (gq, by) such

i=1

that A(ANAB) < £. Now, we find that:

AAB=(AUB)\{AnB)c (ANuA*uB)\ (A¥N N B)
C A% U (AN uB)\(AV nB)) = A*uAVAB



Hence, we get that A(AAB) < MA®) + MANAB) < § + § = e. We conclude that A
satisfles P, for any ¢ and hence A € A.



1 Problem 2

RN theorem: Let 1 be a positive o-finite measure and let v be a complex measure. Then, there exist
unique ¥,, ¥, such that v = v, + v, and a function & € L1(S, o, u) such that

VG(E) _ »u(lEh)

foral Fe ¥ and v, L p._Moreover, h is y-a.s. unique.
For the second part define v* on G by setting for all A€

vE(A) = f X*dP.
A

These are two finite positive measures that are absolutely continuous wit P. By RN Theorem there exist
two G-measurable functions h% : Q — [0, 00) such that for every A € G

Vi(A)=[4fLidP.

Define Y := h* — h~. The uniqueness is trivial.

2 Problem 3

A. Since Inz is a concave function we can apply Jensen inequality to see that ElIn X; < InEX; =0.
B. Since In X, are iid by the Strong Law of Large Numbers we have an a.s. convergence:

1 n
=Y X5 ElhX, =c
n
k=1
Then, by Proposition 7.6 we also have that Z,I,/ " = gn Zi=110Xk _y o€ almost surely.
C. Given the assumption, we have P(0 < es Ti-1 Xk < gnM ) = 1. Then we can apply Dominated
Convergence Theorem to interchange the integral and the limit:

lim [ |Z/" - ef|dP = fﬂlﬁ& |ZL/7 ~ &°|dP.

n—oo

In the view of B we obtain the required L! convergence.
D. Clearly, Z,, is 7, adapted. Also,

n
E|Zn| = J] Ee"** = (EX;)" = 1.
k=1
Hence, Z, € L1.
Finally, since Xy is independent of {X;}7_, and for i = 1...n X; is F,-measurable, we have

n

E(Znt1|Fo) =E (e'" Antt TT el Xx ]}'n) =Z,E (e‘n"n+l |}'ﬂ) = ZoEXpy1 = Zn.
k=1

Thus, Z,, is a martingale.

E. Since sup, E|Z,| = 1 < co we can apply Theorem 10.5 to see that there exists Zo € L! such that

Za = Z almost surely.

F. Since X; are iid we also have the independence of A,. Also, P(A4,) =P(A;) =¢> 0 for every n € N.

Hence,
oo [e=
Z]P(An) = Zc=oo.

n=1 n=1
Now we can apply the BK lemma to obtain the required result: P(NpeN Umpn Am) = 1.
G. Since Z, — Z, on the set {Zy > 0} we have lim, 3 p., W Xi = InZ. Hence, lim;ooln Xy, = 0,
which implies limy 00 Xy = 1.
By part F we have that P(X,, — 1) = 0. Using the first part of G and the fact that Z., > 0 we conclude
that P(Z =0) = 1.
H. No. Assume that Z, is UI. Then by Theorem 10.8 we have E{(Zy, | ) = Z5 almost surely. By part G
it would mean that Z,=0 a.s. for every n, which is clearly not the case, since P(X; > 0} = 1.



3 Problem 4

A. Since B,, is independent of X,,, we have that

n

27 (:x)m(;—fil)m (-5 = (22 41- 1)
B. By the reminder n
(=t ) e

We have seen in class that the right hand side is the characteristic function of a random variable ¥ :=
Zi};l Xy, where IV is a Poisson(1) rv independent of a sequence X,. Then by Corollary 13.14 we have a
weak convergence of S, to Y.



