OBSERVATIONAL & THEORETICAL COSMOLOGY
Midterm Exam 25.05.2016

B PROBLEM 1 (3 points) : Theoretical questions
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Figure 1: The geometry of the three observers from theoretical Question 1.

Question 1: Consider the configuration of three observers from Figure 1. The observer O is
standing still, while Oy and @3 move away from O; in opposite directions. In Oy frame, O;
and O3 are moving with respect to each others with speed v = vy + vy, Clearly there are
choices of vy, v such that v > ¢ (for example v, = 0.6e and v; = 0.8¢). Why this is not in
contracdiction with Lorentz invariance?

Question 2: What is the weak equivalence principle and why does it imply that the gravitational
mass is equal to the inertial mass?

Question 3: The graviton is the propagating degree(s) of freedom of gravity, and describes
perturbations of the metric around a flat background, i.c.

Yo = T + N
How many degrees of freedom does the graviton h,, carry in a three dimensional space-time

(two spatial dimensions and one time dimension)? Justify your answer.

B PROBLEM 2 (3 points): Uniformly accelerating observer

Let @, be an observer at rest, and (@, an uniformly accelerated observer. The trajectory of Os
in Q) frame is described by the parametric curve (in this problem we set ¢ = 1 such that time is
measured in meters):

t(A) asinh /(N a)
(A} | _ | acosh /(M a) 5
b | = 0 ‘ @1
z(A) 0

(a) Show that A is the proper time along the world line, and give the interpretation of the parameter

a.

(b) Draw a space-time diagram (in the (x,1) plane) in which you show:

(7) The trajectory of (J;, that is the curve,

(#7) The space-time region that can send light signals to Os.

(#71) The space-time region that can receive signals from Os.



(c) Define the Momentarily Comoving Reference Frame and compute the proper acceleration of
the observer O, and show that the components of the proper acceleration are,

a.l"

0
ot = 0
]

with  a® = 1/a.

B PROBLEM 3 (4 points) : Detection of gravitational waves

Consider a gravitational wave h;; == hy{t,y) propagating in the positive y-direction (k = & e;,).
There are two independent polarisations of this gravitational wave, a plus one and a cross one. In
the case at hand, one can write hy; (¢, ) = 3 y€5h (¢ y), where ¢f; and ¢} are the following

ae={, %
polarization tensors’ (
10 0 00 1
5;;:: 00 0 . €;=10 0 0} . (3.1}
6 0 —1 160
and
Ity z) = A* cos{wt — ky) . (3.2)

We want to determine what is the effect this wave has on a group of test particles initially distributed
in a circle perpendicular to the propagation direction of the wave, i.e. the circle lies in the (zz)-
plane. In order to do that one needs to solve the geodesic deviation equation for the separation
vector 59 between two nearby particle trajectories, which in leading order for slow moving particles
(dr®/d7v = (1,0,0,0}) is given by
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BtQS = 25‘ Btﬁhw . (3.3)
(a) Consider a gravitational wave as in (3.2) with A = 0. Show that (3.3) has the following

perturbative solution (A* serves as a perturbation parameter in equation (3.3))

St y) = (1 + -{1; cos{wt — ky))Sl(O, y), (3.4)
St y) = S*0,y) (3.5)
St y) = (1 - —47; cos{wt — ky))SS(O, y) . (3.6)

(b) Derive the solution of (3.3} for a gravitational wave for which A* = 0, i.e. when the wave is
cross-polarised.

(c) Sketch for both (plus and cross) polarisations of the above gravitational wave how particles
move assuming they were distributed on a circle at the initial moment. Do this by sketching
snapshots of the particle distribution for every 1/4 of the period.

n this problem the normalisation lactor of __1\/_: can be ignored.
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