Structure of Matter (NS-266B)

Test 3 - Nuclear Physics

3 April 2014; time: 45 minutes

The test consists of two parts (I and II):

- In Part I, basic knowledge is tested in ten multiple-choice questions.
- Part II consists of two open exercises.

Each multiple-choice question gives 1 point. For the open exercise the maximal number of points is 10 for each exercise. The total number of points is 30.

- → Answer the multiple-choice questions on one piece of paper.
- → Answer each of the open exercises on a separate piece of paper.
- → Write your name and student number on each page.
- → Do not give final answers only, explain your reasoning (short) and/or give full calculations.
- → Calculator use is allowed (no cell/smart phone!).

Success!

Part I: Multiple choice questions

Instructions: Choose one answer. Each correct answer gives 1 point.

- 1. The momentum of an elementary particle is typically given in not-natural units, namely
 - A. GeV
 - B. GeV/c
 - C. GeV·c
 - D. GeV/c²
- 2. The Rutherford's scattering law is true when the α -particle
 - A. is absorbed by the gold nucleus.
 - B. penetrates the nucleus.
 - C. undergoes a deep inelastic scattering.
 - D. has a head-on collision on the gold nucleus.
- 3. The radius of a nucleus is how many times smaller than the one of an atom?
 - A. 100
 - B. 1'000
 - C. 100'000
 - D. 10'000'000

4.	The sub-structure of the proton and neutron is evident from its
	A. mass.
	B. electric charge.
	C. colour charge.

- 5. The relevant interaction for the decay $n \rightarrow p + e^- + \overline{\nu}_e$ is the
 - A. strong interaction.

 B. gravitational interaction.
 - C. weak interaction.

D. magnetic moment.

- D. electrostatic interaction.
- 6. An indication for the existence of a neutral, almost mass-less particle (called neutrino) comes from the
 - A. fast decay of certain nuclei species.
 - B. continuous spectrum of the electron in the β decay.
 - C. discrete spectrum of the electron in the β decay.
 - D. excitation spectrum of β-particle emitting nuclei.
- 7. At current energies in the universe the nuclear force is
 - A. is a fundamental force.
 - B. as strong as the electro-magnetic force.
 - C. residual of the electro-magnetic force.
 - D. residual of the strong force.
- 8. The nuclear interaction between two nucleons can be considered as the exchange of
 - A. mesons.
 - B. hyperons.
 - C. leptons.
 - D. photons.
- 9. The deviations from the Bethe-Weizsäcker mass formula are observed for nuclei with
 - A. no mass defect.
 - B. magic decay length.
 - C. extremely high binding energies.
 - D. extremely low binding energies.
- 10. The basic idea of the nuclear shell model is that
 - A. the nucleus has a shell structure on which the nucleons are fixed.
 - B. in first approximation each nucleon moves independently in a common potential field.
 - C. the spin-orbit interaction can be neglected.
 - D. the nuclear potential has a sombrero shape.

Part II: Open questions

Exercise 1: Bethe-Weizsäcker mass formula (10 points)

a) (2 points) What is the atomic mass A and the atomic number Z for the following isotopes?

$$^{240}_{94}Pu_{146}$$

and

$$^{60}_{28}Ni_{32}$$

b) (2 points) Determine the binding energy $E_{\rm B}/A$ of both isotopes using the figure below?

c) (6 points) We consider the mass formula in a reduced form (volume, surface and Coulomb term)

$$E_B = a_V \cdot A - a_S \cdot A^{2/3} - \frac{3}{5} \frac{Z^2 e^2}{4\pi \varepsilon_0 \cdot r_0 \cdot A^{1/3}}$$

Determine the constants a_v and a_s .

Useful parameters:

$$r_0 = 1.2 \, fm$$

$$\frac{e^2}{4\pi\varepsilon_0} = 1,44\,MeV \cdot fm$$

Exercise 2: Radioactive decays (10 points)

In nature we can find 3 types of Uranium isotopes:

- $^{238}_{92}U$, which forms the 99.27 % of the Uranium in nature and decays with a $t_{1/2}=4.47\cdot 10^9$ years
- $^{235}_{92}U$, which forms the 0.72 % of the Uranium in nature and decays with a $t_{1/2}=7.04\cdot 10^8$ years
- $^{234}_{92}U$, which forms the 0.01 % of the Uranium in nature and decays with a $t_{1/2}=2.45\cdot 10^5$ years
- a) (1 point) Explain why $^{234}_{92}U$ is the less abundant isotope (short answer)
- b) (4 points) Consider the two most abundant isotopes $\binom{238}{92}U$ and $\frac{235}{92}U$). Under the realistic hypothesis that when the solar system was created their abundance was the same, calculate the age of the solar system
- c) (2 points) Consider now a decay chain like

$$A(\lambda_a) \to B(\lambda_b) \to C$$

where λ_a is the decay constant for the nucleus A, and λ_b is the is the decay constant for the nucleus B. Write the differential decay equation for the intermediate stage B (the equation from which you can calculate the number of nuclei $N_B(t)$)

d) (3 points) Consider know the decay chain of $^{234}_{92}U$

$$^{234}_{~92}U \rightarrow ^{230}_{~90}Th \rightarrow ^{226}_{~88}Ra$$

Knowing that the solution to the differential equation of c) is

$$N_B(t) = \frac{\lambda_a N_0^A}{\lambda_b - \lambda_a} \left(e^{-\lambda_a t} - e^{-\lambda_b t} \right)$$

and that the half-life time for $^{230}_{90}Th$ is $t_{1/2}=75000$ y, find at what time you will have the maximum amount of $^{230}_{90}Th$