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1 Part 2 - Open questions

1.1 Rutherford Scattering

Solutions

a) See Figure 1.

θ

b

R

r

i) ii)

C

Figure 1: i) Diagram should show scattering at approximately correct angle and with angle of incidence
approximately equal to angle of reflection. b and θ must be indicated and defined as scattering parameter
and scattering angle respectively. β and R are not required. ii) Path should have smooth curve resembling
hyperbola at approximately correct angle. b and θ must be marked. rC and R are not required.

b) Equation ?? will hold as long as r0 > R. This corresponds to having a low enough incident energy,
low enough R and high enough charges on the two particles. The conditions at departure form
Rutherford law allow a measurement of the nuclear radius.

c) i) First will need expression for b for the hard sphere. From Exercise Sheet 1 solutions:

b = R sinβ = R sin

(
180◦ − θ

2

)
= R cos

θ

2
.

To calculate b, the radius is required. This may be calculated using R = r0A
1/3 = 1.25 fm×2081/3 =

7.41 fm.

This yields b20◦ = 7.30 fm. The relevant cross section is the circle with radius b:

σ = πb2 = 167 (fm)
2

ii) For the charged sphere, the expression to calculate b is given:

b20◦ =
1

4πε0

ZZ ′e2

2E
cot

θ

2
= 1.44eVnm× 1× 82

2× 10× 106
cot

10◦

2
= 3.35× 10−5 nm = 33.4 fm

σ = πb2 = 3522 (fm)
2

d) Realise that the particles scattered into dθ → θ + dθ arrive inside the transverse ring bounded by
b → b− db with area 2πbdb. This is the same area as is described by Equation ??. Therefore:

∆σ(θ, φ) = − dσ

dΩ
(θ, φ) sin θdθdφ = 2πbdb.
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The scattering is symmetric about φ so this dependence may already be integrated, cancelling the
2π factor. Hence:

dσ

dΩ
= − b

sin θ

db

dθ

This is the required expression which would allow calculation of the partial cross section given b(θ).
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1.2 Direct detection of dark matter

Figure 2: Decay chain of 232Th.

Solutions

a) A WIMP is approaching the nucleus (at rest) with a non-relativistic speed v. In the center-of-
momentum frame, both the WIMP and the nucleus have momentum p′ (with respectively speeds v′
and V ′). So we have the relations:

v = v′+ V ′ = (
1

mχ
+

1

MN
)p =

mχ +MN

mχMN
(1)

p =
mχMN

mχ +MN
v = µv (2)
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The WIMP and nucleus scattering with an angle θ, see Figure 3. This means:

~p = (µv, 0, 0) (3)

~p′ = (µv cos θ, µv sin θ) (4)

~q = ~p′ − ~p = (µv(cos θ − 1), µv sin θ, 0) (5)

The recoil energy is given by:

ER =
1

2
MNV 2

R =
| ~pR|2

2MN
=

|~q|2

2MN
(6)

and

|~q|2 = µ2v2
(
(cos θ − 1)2 + sin θ2

)
= 2µ2v2(1− cos θ) (7)

So

ER =
µ2v2

MN
(1− cos θ) (8)

Figure 3: Scattering of WIMP on nucleus in center-of-momentum frame

b) Plugging in the given values for mχ, v and using MN ≈ 131u ≈ 131 GeV/c2, we find:

ER =
m2

χMNv2

(mχ +MN )2
(1− cos θ) ≈ 26 keV. (9)

So a typical energy scale of several keV.

c) Following the definition of the cross section (”their mutual cross section is the area transverse to
their relative motion within which they must meet in order to scatter from each other”), the number
of expected events (per unit time) is just given by: Nevents = NtargetsΦσN .

d) The relevant decays are 232Th → 228Ra + α and 228Ra → 228Ac + β−. The rate of change of 228Ra
is therefore given by:

dN228Ra(t)

dt
= −λ228Ra N228Ra(t) + λ232Th N232Th(t) (10)

where we used for N232Th(t) the solution for exponential decay.

e) Using the solution for exponential decay

dN232Th(t)

dt
= −λ232Th N232Th(t)

N232Th(t) = N232Th(0) e
−λ232Tht (11)
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We can rewrite equation 10.

dN228Ra(t)

dt
= −λ228Ra N228Ra(t) + λ232Th N232Th(t)

= −λ228Ra N228Ra(t) + λ232Th N232Th(0) e
−λ232Tht (12)

Shuffling and multiply with e+λ228Rat, we find:

eλ228Rat
dN228Ra(t)

dt
+ eλ228Rat λ228Ra N228Ra(t) = eλ228Rat λ232Th N232Th(0) e

−λ232Tht (13)

which is the same as

d

dt

[
eλ228Rat N228Ra(t)

]
= λ232Th N232Th(0) e

(λ228Ra−λ232Th)t (14)

Integrate over time,
∫ t

0
:

eλ228Rat N228Ra(t)−N228Ra(0) =
λ232Th N232Th(0)

λ228Ra − λ232Th
(e(λ228Ra−λ232Th)t − 1) (15)

Assuming there was no 228-Ra from the start, and the definition of activity A(t) = λN(t), we find
equation ??.

A228Ra(t) = A232Th(0)
λ228Ra

λ228Ra − λ232Th
(e−λ232Tht − e−λ228Rat) (16)

f) If we look at the lifetimes in Figure 2, we see that for every reasonable timescale for an experiment,
λ232Th = 1/t1/2,232Th = 1/large ≈ 0. So equation ?? simplifies to

A228Ra(t) ≈ A232Th(0) (1− e−λ228Rat) (17)

g) See figure 4.

Figure 4: Solution to d).
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h) After long enough time (but still t � t1/2,Th), all isotopes in the decay chain will be in secular

equilibrium, so all rates of change are zero: dNd(t)
dt = 0. Therefore, λd Nd(t) = λp Np(t) (where d =

Daughter, and p = Parent). Therefore, if we measure the amount of one isotope at time t, we know
all amounts. Example:

216Po : N216Po =
λ220Rn

λ216Po
N220Rn

=
1/55 s−1

1/0.14 s−1
N220Rn (18)

i) Neutrinos. They can undergo a weak interaction with one of the atomic electrons, causing electronic
recoil. Just as for the other electronic recoils these may leak into the nuclear recoil signal region, if
there are enough of them. A second way in which neutrinos may leave a signal in your DM detector
is by coherent scattering to the atomic nucleus (not yet observed). For all the other Standard Model
particles you can shield your detector.
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1.3 Conservation laws and Feynman diagrams

Solutions

a) µ− → νµ + e− + νe

– Not allowed, lepton number is not conserved

b) π0 + p → n+ p

– Not allowed, baryon number is not conserved

c) e− + p → n+ νe

– Allowed, electron capture using weak interaction

d) D+ → k− + π+ + π+

– Allowed, weak decay (charm to strange) and quark pair creation using a gluon

e) p → p+ k− + k+

– Not allowed, energy is not conserved

f) J/Ψ → µ+ + µ−

– Allowed, neutral weak decay and EM decay both possible

g) / h)

b

b

u u

g

g
g

t −→

u u

s d

d

u

d

u

W+K+

π+

π+

π−

t −→
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1.4 Pion-proton scattering

Figure 5: The probability of the interaction between a π+ and a proton as a function of the incident
kinetic π+ energy.

Solutions

a) According to the description, this is a fixed-target experiment (with pp = 0). This means that
E2

p = m2
pc

4, while E2
π = m2

πc
4 + p2π+c2. We obtain the following invariant pion-proton mass:

minvc
2 =

√
(Eπ + Ep)2 − (pπ · c)2

=
√
m2

πc
4 +m2

pc
4 + 2Eπmpc2

=
√
m2

πc
2 +m2

pc
2 + 2(Ekin,π +mπc2)mpc2.

b) Mass: From the figure, we obtain Ekin,π ≈ 200MeV. Using a), we calculate

mXc2 = minvc
2 =

√
m2

πc
2 +m2

pc
2 + 2(Ekin,π +mπc2)mpc2

≈
√
139.62 + 938.32 + 2 · (200 + 139.6) · 938.3 MeV

≈ 1239.8 MeV

Charge: Due to conservation of charge, the particle should have a charge of 2.
(Baryon number: Since the proton is a baryon (B = 1), the pion is a meson (B = 0) and the
baryon number is conserved, the created particle should be a baryon.)

→We conclude that the created particle X is ∆++ (m∆ = 1232 MeV/c2).

c) Strong interaction (+ some explanation).

d) Energy-time uncertainty relation: ∆E ·∆t ≥ ~/2.
To be entirely correct, one should use Γ = 100 MeV = 2∆E. The factor 2 was not treated explicitly
in class, which is taken into account while grading.
This yields the following lifetime:

τ =
~
Γ

≈ 6.6 · 10−24 s.

.
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