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EXAM Field Theory in Particle Physics

Wednesday. June 11. 2014. 10.00 - 13.00. BBL205.

Start every exercise on a separate sheet.

Write on each sheet: yvour name and initials. In addition. write on the first sheet: your

address. postal code and indicate whether vou follow the master’s programie in theoretical

physics.
Please write legibly and clear.

The exam consists of three exercises.

1. Gauge theory of SU(N) with matter in the adjoint representation

Consider a non-abelian gauge theory based on the group SUCN) with anti-hermitian. traceless.

generators f,. coupled to N* — 1 scalar fields described by a hermitian. traceless matrix . trans-

forming in the adjoint representation of the gauge group. We write the gauge fields in Lie-algebra
valued form. W, (r) = W,%(r)1,. with T r[t, ty] = —J4. Also the scalar fields can be decomposed

in this way. ®{r) = io®(x)t,. Hence the local SU(N) transformation rules are

i)

i}

iii)

W, > UW, U+ (0,000 &= UdUL. (1)

Give the expression for the field strength G and for the covariant derivative D,® and
specify (vou dou’t need to derive it} how they transform under gauge transformations.

Show that the following Lagrangian is gauge invariant.

L=LTr[G,,c"

ig
_ %T‘r {DN(I’ D“(I)} _ é/thr {(I)Zj S (T‘r (@3])2 AT [q);,} ’ (2)
We now add the following gauge-fixing term to the Lagrangian
Lyg= ‘%(Fa)z with F* = Anp# 117, (3)

where A is an arbitrary constant. and n# denotes a constant vector. What is the gauge
variation of /7 From the result write down the associated ghost Lagrangian. Prove that

the ghost loops will not depend on the parameter .

In the limit A — > the gauge field propagator Ay (k) sarisfies n® A (k) = 0. Hence this
limit corresponds to taking the axial gauge condition n*1,9 = 0. Explain now that the
ghost loops cannot contribute to amplitudes with external gauge and matter fields m the

X = > it
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Figure 1: The ratio R versus /s [GeV) |. The combined data from a number of erperiments.

including peaks of particle resonances.

v) Consider including the following gauge invariant term to the Lagrangian
L'=GT[(D,®) (D) Gop| . (4)

where (7 is a new coupling constant. This term contains three derivatives (one is implicit
in (7,,). Show. using the Bianchi identity for the gauge fields. that £’ can be reduced to a

term with only two derivatives.

2. Quantum Chromodynamics, the ratio 7 and IR divergences
R is the ratio of cross sections in e7e™ collisions at center of mass energy /s

olete” — hadrons|(s)
olete — prp|(s)

(1)

R(s) =

A measurement of this ratio is shown in Fig. 1. In this problem we consider perturbative QCD
aspects of this quantity. QCD is an SU(3) gauge theory. with ny quark flavours. each transforming

as a friplet. Its Lagrangian reads

T f

| - - -
Loep = Il Ir(GLGY) - fz:] D+ mypey (2)
with
Du, = 8;1 - gswru : C’Yu‘u = —0s {Du DU] . (3>

and 1 the number of quark flavours. The gluons are written as W, = W,", and the QCD
coupling constant is g.. In analogy to the fine structure constant in QED. we define

=2 (1)

-L g _
kY

and the quarks interact with photons accoring to the usual QED interaction LOFP = ie Qg U Py



The relevant QCD Feynman rules are (we use Fevnman gauge and take Tr[t, t,] = —d,,
. . (= a

L.a v. b

1 7)}“/ ‘5ab
000000000 = 75— 0
e 2m)h k2
k (5)
aLl 3.
B dy ( 1 )
— TR ip+m/a:
» (6)
(.t g,
= ( ) Js( /'#)ud (f )_/
M. (7)

The lowest-order diagrams that contribute to the numerator and the denominator are given in
Fig. 2.

e ut e q

Figure 20 The lowest order diagrams for numerator (rightmost) and denominator (leftmost) in the
definition of R. The external particles are indicated, and ~* indicates the intermediate off-shell

photon. The quarks will all eventually become hadrons.

i) We first neglect QCD interactions. Argue that we may express the ratio R as
*AZQJ’ 4777f) (8)
where N is a constant (in the approximation where we ignore differences in mass of the

outgoing fermions). and where the quark flavour f has electric charge ¢ 7. How is K related
to properties of SU(3)7 Explain why R is approximately 3.3 in Fig. 1 for the largest value of

v/'s shown. [Realize that there are four different quark flavours with masses below 4 GeVe2.
two with () = ~§ and two with Q) = § y

In Fig. 3 we display one of the one-loop diagrams contributing to the numerator of the R ratio.
it} Consider of this diagram only the part inside the box. and consider the quarks to be massless.
Show that its expression. in n diniensions. reads

d‘”] &‘(\pl) ,n lp o 1[ Au W) l _P)

Ap) = e ¢ t, 1" -
W)= ie Qe (t ’)” / 2 = pa)? U+ )2 2

(9)



where @(p; ) and 2(ps) are the on-shell spinors associated with the outgoing quark and anti-
quark. Here we note that A# carries the the colour indices of the quark and anti-quark.

Figure 3: One of the one-loop diagrams contributing to the numerator of the R ratio. The part in

the box is the subject of question 2.12).

When one calculates this diagram in dimensional regularization. one finds among the terms the

following one-loop scalar integral.

/ darl 1 (10)
o) (L+p )2 (= p2)? B
iii) Using Feynman parameters. show that this expression may be written as’
© A /l /] y ;
2 [ - dr | dy+ < (11)
/ (27)" Sy o P2ryl-py 21—yl po)? \
Show, writing n = 4 + =, that this is equal to
irzte/? e [ e [ B s
——M—(D )1+f1 (1 —2/2)2py-pa)” 777 drr T dy y= (1 — )i (12)
i 0 0

iv) Explain how this leads to a double pole in . What are the physical origins of this double
pole?

v} The full answer at order a in perturbative QCD. when including all diagrams. both virtual

and real is finite and simply equal to

Ris)= K3 Q2 6(s — 4m?) (1 + %) . (13)
f it

YYou may use the following results in your calculations.

1 [la+ 3) /1 . o - p)Bt
- = : dr- ‘ — .
AeB3 - Tl Jg TA+ (1 - 2)Blet?
/ d™q 1 ir P Tla —n/2), 5 ./0-u
: 5 v e (Y T
(277 (g? + m2)® (2m )0 I'la)

where I'(z) = I['(1 + =)/ is the Euler gamma function. For small = one may approximate I'(1 « z) >~ 1 - 72
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Describe briefly how the infrared divergences such as we just found in fact cancel to reach

this result.

3. The Higgs boson mass hierarchy problem
Here we study one of the most central problems in modern day particle phvsics: the self-energy

corrections to the mass of the scalar Higgs boson h. This problem motivates many models beyvond
the Standard Model. We consider the following Lagrangian for h coupled to a fermion ¢ with

strength A.

i)

i)

Ly, = wé [((’3“/7)2 + mj hz} — e — my +Ah L. (1)
(74

Consider the one-loop self-energy diagram for the scalar field h with a fermion loop, which
is of order A”. Do vou expect this diagram to be divergent. and if so what is its degree of
divergence? Describe how renormalization would cancel the divergences. For simplicity we
will assume that the mass correction can be evalnated by setting the external momentum in
this diagram to zero. Argue that strictly speaking this is only correct. when my, = 0.

Write down the expression for this diagrani. remembering that self-energy diagrams acquire
an additional factor of [~1(27")]"!. Using dimensional regularization. show that

; NPt (1 -1 1 m?
omy = — ——=t [ 2 T Ty £
§ Ar? <5 2 2 (~1W /13>>
N2t /1 e 1 me2
— L‘); e he . (2)
2me s 2 2 A op®

Next. we consider 1 additionally coupled to a complex scalar field ¢. described by the Lagrangian

Lho = = |00 +m3 (o] =k h* o + vwh ol (3)

with two coupling constants x and v k.

111}

v)

v)

Draw the extra one-loop diagrams that contribute to dm; and write down the correspouding
expressions (without using a regulator). Assune again that the external momentum can be
set to zero. and argue {without a new n-dimensional calculation!) that they give the same
expression as (2). with m,. replaced by my. and. for the first line in (2). M replaced by —%f{

and. for the second line. 4 \m? replaced by —v?s2.
- . M, oD . . L. oy
Clearlv. using ¢ = —’/\i Mo = m, and & = 2X°. the leading singularities cancel. But if

m; = mZ + 0°. what is the total correction to the mass of h? Assuiing that m,. 1s verv
large (m,. >» 1 GeVe?). can the corrections to the mass of & be made small? What do vou

learn from this?

Bonus question: [s this theory strictly renormalizable. and why (not}?

foia §



