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1) Start every exercise on a separate sheet.

Write on each sheet: vour name and initials. In addition. write on the first sheet: vour

b
—

address. postal code and indicate whether vou follow the master’s programme in theoretical

physics.
3) Please write legibly and clear.
1) The exam consists of three exercises.

1. Renormalization in Quantum Chromodynamics and asymptotic freedom

Here we examine the notion of asvmptotic freedom in QCD. The QCD Lagrangian is:
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where g 4 is the unrenormalized { “bare”™) QCD coupling and ny the number of quark flavors. The
quark fields vy transform in the fundamental representation of SU(3). The Lagrangian in (1) is

invariant under local SU(3) transformations.

i) From the transformation rule for the covariant derivative. derive how the Lie-algebra valued
field A, must transform under a finite SU(3) transformation. How does then the Lie-algebra
E \ o

valued field strength tensor &, transform?
We could possibly add to the Lagrangian in (1) the term
Lo =0Tr(G,,G )=t (3)

with ##77 the 4-dimensional Levi-Civita svimbol. which is fully anti-symmetric in all four of its
indices.
ii) [Bonus question] Argue that this term is odd under a parity transformation. under which

for any vector (field) the space components get a minus sign. but the time component does

not. Show that Ly is a total derivative.



We shall however not include this term and continue to work with the Lagrangian in (1).

Some of the QCD Feynman rules are
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iii) First we consider the gluon self-energy diagram.
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Argue that it must be proportional to p,p, — n,,.p°. Give its superficial degree of divergence.

In dimension regularization (n = 4 + ¢), the QCD coupling is renormalized as follows.
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with g the renormalization scale. g, p(u) the renormalized coupling evaluated at scale y and C'4

the Casimir invariant for the adjoint representation.

iv) Discuss how the loop diagram in Eq. (8) contributes to the renormalization in Eq. (9).
Draw the one-loop correction to the 3-gluon vertex involving a fermion loop and argue that
it contributes to the renormalization of the QCD coupling constant on the basis of power

counting.
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v) Give the definition of the beta function for the coupling a,. From the renormalization
equations Bq. (9). Eq. (10). compute this beta function up to order a2, and obtain a
differential equation govering the “running” of the QCD gauge coupling. Finallv. show that
the solution to this equation reads
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for some scale A. This behavior of the coupling exhibits so-called asymptotic freedon.

(11)

Explain what this means physically.

We now assume that we have computed a certain cross-section ¢ using QCD Fevnman rules. The
lowest order calculation is already of order a?. and we assume that we have computed the full al
term for this cross-section.
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with F. G finite functions. and @) a large energy scale typical for that cross-section. The O(a?)
correction term contains a UV divergence.

vi) Show that this divergence can be removed by renormalizing the coupling and that one finds.

to order a? . after renormalization.
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2. Gravitons

Like the Standard Model. gravitation is also based on a non-abelian gauge group. although this
gauge group (consisting of general coordinate transformations) is infinite-dimensional and of a
different type than the gauge groups that one encounters in particle physics. Nevertheless. certain
features are very similar. The gauge field of gravity is a symmetric rank-two field h,,, () which
describes the gravitational degrees of freedom. The particles associated with the gravitational

field are massless spin-2 particles. called gravitons.

Here we consider free massless gravitons in four space-time dimensions. Obviously the free field

must (at least) satisfy the field equation [k, = 0.

1) How many field components does h,, comprise?

Just as for the photon. a Lorentz covariaut description will require gauge invariance to reduce
the number of degrees of freedom. For the graviton. the (linearized) gauge transformations take
the form oh,, = 0,6, + 0,€,. where the &,(r) are four arbitrary functions of the space-time
coordinates. Because of this gauge invariance the gravitons must couple to a conserved tensor

source T svmmetric in g, v and subject to 0,T* = 0.

i) In light of this gauge invariance. how many off-shell degrees of freedom should h,, comprise?
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iii) Let us consider the coupling of &, to photons. Argue that. because of electromagnetic gauge
invariance and parity reversal svimetry. the expression for T#” can be written in terms of
the photon field strength as T# = an® F,,% + 3 F** F¥,_ up to terms with more than two
derivatives. Derive now a linear relation between the two parameters a and ;3 by imposing
the condition 9, T*" = 0 and by making use of the QED field equation (in the absence of

matter) and the Bianchi identity.

We will now consider the exchange of a graviton between two arbitrary conserved sources. T
and TH'. not necessarily associated with the photon field strength. This is the analog of what
was done in class where we considered the exchange of a (virtual) photon between two conserved

currents d,J* = d,J* = 0. where we found
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Observe that we have eliminated the longitudinal component of J (i.e. the component parallel to
the momentum k) by using current conservation. Note also that we have used that the propagator
residue is equal to 1,,,. up to terms proportional to &, or/and k,, which vanish for conserved sources.

iv) Describe the physical consequences of the result (1) for the number of physical photon

polarizations.

v} For simplicity let us assume that the propagator three-momentum is directed along the 3-
axis. so that &' = 0. where 7 = 1.2 denote the transverse directions. Let us now decompose
the source TH (k) into T3 (k). T (k), T(k)y. Tk). T"(k) and T (k). where k¥ denotes
the incoming (or outgoing) off-shell momentum. Show that the first three components can
be decomposed in terms of the last three. How many independent components do T4, 7%
and T have? How does this counting relate to vour answer in question ii)?

Consider the analog of (1) for the exchange of a graviton. where the propagator carries two sym-
metrized index pairs, (ur) and (po). Hence we consider the expression T#(k) Ay po (b)) T77' (k).
As suggested by the previous case we assume that the propagator A, ,» (k) has an overall factor
[i(27%) k%71 and a residue factor that consists of a linear combination of %(%p"lw + o) and

an optional term 7 1,,7,,. wWhere v i1s a parameter.

vi) To find the expression for T AT’ consider first the residue terms. 7" 7, and ~T#, 17,
and express them in terms of the components 7% 7% and T% for both tensor sources.

vii) Write the various contributions similar to the first term in (1) and determine the number
of phvsical gravitons for an arbitrary value of 4. Determine the value of v for which the
generic number of graviton states decreases by one. Can you explain this phenomenon?



3. Combinatorics of vertices

Counsider the Lagrangian for a multi-component scalar field o = (o'. 0% .. .. o) equal to

L=-30,0 00~ P60 - No-a)? (1)

When dealing with external lines with indices. one can include all line attachments into the

definition of the vertex and divide by a factor of n!. where n is the number of lines emanating

from the vertex. Here we have only a single four-point vertex proportional to the coupling A.

i)

i)

iii)

iv)

Show that. according to the above prescription. this vertex can be written as
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where we suppressed the standard factor i(27)* times the momentum-conserving delta func-

tion. Where does the final numerical factor of 1/3 comes from?

When considering o-¢-scattering. the explicit expressions for the diagrams will also involve
the square of the vertex (2). Show that this square is
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Now write down the one-loop diagrams for ¢-¢-scattering with the external momenta p?. p°. p¢.

taken as incoming. Argue that there are three such diagrams. each involving the function
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I({pr+ p2)° MP) = / diyq
depending on the three independent sums of two of the external momenta. i.e. p®+p®. p+p°
and p? + p4.

Consider the case of N = 1 and compute the combinatorial factor for any of the three

diagrams.
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