Examination Exercises Particle Physics I

26 October 2011

Please remember to:

- \bullet make all exercises on seperate pieces of paper,
- $\bullet\,$ add your name on each piece of paper you hand in,
- write in a readable way(!): it is better to make a readable exercise with mistakes than to make an unreadable exercise that is correct.

1: Theory Questions

(a) Electromagnetism

- (i) Write (don't derive) the definitions of the \vec{E} and \vec{B} fields in terms of the vector potential A^{μ} .
- (ii) The antisymmetric electromagnetic field tensor is defined as: $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$. Use this to derive the components of the 4-by-4 field tensor in terms of the \vec{E} -field and \vec{B} -field components.

(b) Gauge Theory

- (i) Which U(1), SU(2) and SU(3) local gauge invariances are implemented in nature according to the Standard Model? What are the related quantum numbers?
- (ii) Give the expression for a SU(3) local gauge transformation acting on a quark spinor triplet wave-function. $\rho \approx 6$

(c) Feynman Rules

Consider a scattering process of two incoming particles and two outgoing particles.

- (i) Draw the t-channel diagram in which two incoming particles scatter in the field of a force carrier particle.
- (ii) Give the Matrix element in the case that the scattering particles are spinless (S=0) and that the force carrier is a photon.
- (iii) Give the Matrix element in the case that the scattering particles are spinors and the force carrier is a W-boson.

2: Dirac Spinors and couplings

A positive energy Dirac spinor, i.e. a solution of the Dirac equation with positive energy, can be written as:

$$u^{(s)} = N \left(\begin{array}{c} \chi^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi^{(s)} \end{array} \right) \text{ where } \chi^{(1)} = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \text{ and } \chi^{(2)} = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

The chirality and helicity operators are given by:

$$\text{chirality} = \gamma^5 \quad ; \quad \text{helicity} = \lambda = \frac{1}{2} \vec{\Sigma} \cdot \hat{p} \quad \text{with} \quad \vec{\Sigma} = \left(\begin{array}{cc} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{array} \right)$$

- えらうこか
- (a) Which quantum number is represented by the label s in the spinor?
- (b) Give (don't derive!) γ^5 in the Dirac-Pauli representation.
- (b) Decompose the Dirac spinor in left and right handed projection operators. Express your answer in general terms of γ^5 and u.
- (c) Write the bilinear covariant ("vertex factor") for a scalar interaction and work it out in terms of right and left handed components u_R and u_L .
- (d) Write the bilinear covariant ("vertex factor") for a vector interaction and work it out in terms of right and left handed components u_R and u_L
- (e) Show that in the ultrarelativistic limit the chirality operator and the helicity operator have the same effect on the Dirac spinor, up to a factor 1/2.
- (f) Compare the helicity behaviour of a vector interaction and a scalar interaction in the ultrarelativistic limit.

3: The Higgs Field

Part of the local symmetry group of the Standard Model is $SU(2)_T \otimes U(1)_Y$, where T stands for weak isospin, and Y stands for hypercharge. Consider the Higgs field, which transforms as a doublet under weak isospin, so we write it as

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \tag{1}$$

The field Φ has hypercharge +1.

(a) Write down an infinitesimal, combined $SU(2)_T \otimes U(1)_Y$ transformation of Φ in terms of small parameters and group generators $T_i = \frac{1}{2}\tau_i$ and Y. Use that for small α the approximation holds: $\exp(\alpha) \approx 1 + \alpha$, and ignore second order terms.

In the groundstate of the Standard Model, we think the Φ field takes the value

$$\Phi_{\text{vac}} = \begin{pmatrix} 0 \\ v \end{pmatrix} \tag{2}$$

where $v \approx 246$ GeV is a constant.

(b) Write out the transformation of the groundstate Φ_{vac} and show that only the symmetry generated by the particular combination $T_3 + \frac{1}{2}Y$ leaves this groundstate invariant under the infinitesimal transformation.

The Pauli matrices are:

$$au_1=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight) \;\;\; ; \;\;\; au_2=\left(egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight) \;\;\; ; \;\;\; au_3=\left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$$

4: The process $\mu^-\mu^+ \to H \to b\bar{b}$

- (a) Give the lowest order Feynman amplitude (i.e. the Matrix element) for the $\mu^+\mu^- \to H \to b\bar{b}$ process corresponding to the diagram shown in the box. Note that the 4-momenta p,k are the momenta of the incoming μ^- and μ^+ spinors, the 4-momenta p' and k' are the momenta of the outgoing b and \bar{b} spinors. The Feynman rules which are new to you, the Higgs propagator and the Higgs coupling constants, are given above on the right.) The Higgs has S=0, i.e. it is a scalar interaction!
- (b) Show that the spin averaged and summed amplitude square reduces, after the Trace calculation and after neglecting muon and b-quark mass effects, to:

$$\overline{|M|}^2 = g_{H\mu\mu}^2 g_{Hbb}^2 \frac{s^2}{|s - m_H^2|^2}$$
 (3)

where m_H is the Higgs mass.

(c) Calculate the differential cross section $d\sigma/d\Omega$. Show that the total $\mu^-\mu^+ \to H \to b\bar{b}$ cross section can be written as:

$$\sigma(\mu^{-}\mu^{+} \to H \to b\bar{b}) = g_{H\mu\mu}^{2} g_{Hbb}^{2} \frac{1}{16\pi} \frac{s}{|s - m_{H}^{2}|^{2}}$$
(4)

(d) To take into account the fact that the Higgs is an unstable particle the above given propagator for the Higgs particle must be changed as follows (Γ_H represents the total decay width of the Higgs particle):

$$\frac{i}{q^2 - m_H^2} \to \frac{i}{q^2 - m_H^2 + i m_H \Gamma_H} \tag{5}$$

Use this changed Higgs propagator to sketch how the total cross section depends on the c.m. energy $\sqrt(s)$ of the $\mu^-\mu^+$ system. Also explain how from measurements in a certain c.m. energy range one can determine the Higgs mass, m_H , and the Higgs total decay width, Γ_H . Which combination of reactions do you need to investigate in order to separately determine g_{Hbb} and $g_{H\mu\mu}$?

