Examination Experimental Quantum Physics Part Two

Peter van der Straten October, 2014

Zeeman slowing: The force on an atom in an electro-magnetic field is given by

$$\vec{F} = \hbar \vec{k} \gamma_p = \frac{\hbar \vec{k} s_0 \gamma / 2}{1 + s_0 + (2\delta_{\pm} / \gamma)^2}.$$

- 1. Describe in your own words the symbols $\hbar \vec{k}, \gamma_p, s_0, \gamma$ and δ .
- 2. What is the maximum force and acceleration on resonance? For Zeeman slowing the detung δ is given by

$$\delta' = \delta - \vec{k} \cdot \vec{v} - \frac{\mu' B}{\hbar},$$

with μ' the difference between the magnetic moment of the excited and ground state.

- 3. Find the maximum field B at the beginning of the slower required to slow atoms down from 1000 m/s. Assume $\mu' = \mu_B$.
- 4. Find the minimum length required to slow down atoms from 1000 m/s to standstill.
- 5. Describe the difference between laser slowing and laser cooling.
- Indicate, if in the case of Zeeman slowing there is only slowing, or also cooling.

Important numbers: $m_{\rm Na}=23$ amu, 1 amu = 1.67×10^{-27} kg, $\lambda=589$ nm, $\mu_B=9.27\times 10^{-28}$ J/G and $\hbar=1.05\times 10^{-34}$ Js.

Bose-Einstein condensation: The Maxwell-Boltzmann distribution function for a classical gas is given by

$$f_{\rm MB}(\epsilon) = \exp[-(\epsilon - \mu)/k_B T].$$

1. What is the meaning of the symbol μ ? Describe in your own words, how it is used in thermodynamics.

For an uniform gas the density of states is given by

$$\rho(\epsilon) = \frac{V}{4\pi^2\hbar^3} \sqrt{8m^3\epsilon}.$$

- 2. Calculate the number of atoms at a certain temperature T in a volume V. Express your result in terms of the deBroglie wavelength $\lambda_{\text{deB}} = h/\sqrt{2\pi m k_B T}$. Hint: Use the definite integral given below this exercise to evaluate your integral.
- 3. Use this result to determine μ and discuss its limits for small and large atom densities.
- 4. What happens, when $N/V = 1/\lambda_{\text{deB}}^3$? What happens if $N/V > 1/\lambda_{\text{deB}}^3$ and do you consider this range physically sound?
- 5. Determine the total energy E of the system and express your result in terms of the total number of atoms N.

In an isotropic, harmonic trap the density of states becomes

$$\rho(\epsilon) = \frac{\epsilon^2}{2\hbar^3 \omega^3}$$

with ω the trap frequency.

- 6. Find the total number of atoms N and the total energy of the system E in an harmonic trap.
- 7. Compare your results for the energy per particle in 5) and 6) and discuss the difference.

For a Bose gas the distribution function is given by

$$f_{\mathrm{BE}}(\epsilon) = \frac{1}{\exp[(\epsilon - \mu)/k_B T] - 1}.$$

- 8. Discuss under which conditions this distribution function becomes comparable to the Maxwell-Boltzmann distribution function.
- 9. Does the Bose-Einstein statistics lead to a larger or smaller occupation of the lowest states compared to Maxwell-Boltzmann statistics. Indicate how this can be explained using the Dirac symmetrization principle.

The following definite integral can be used, if necessary:

$$\int_0^\infty \mathrm{d} x \; x^{\alpha-1} e^{-x} = \Gamma(\alpha).$$

For various values of α the values are

$$\begin{array}{c|cc} \alpha & \Gamma(\alpha) \\ \hline 1 & 1 \\ 3/2 & \sqrt{\pi}/2 \\ 2 & 1 \\ 5/2 & 3\sqrt{\pi}/4 \\ 3 & 2 \\ 7/2 & 15\sqrt{\pi}/8 \\ 4 & 6 \\ \end{array}$$

The Zeeman effect:

The interaction of an atom with the magnetic field is given by

$$\mathcal{H}_Z = -\vec{\mu} \cdot \vec{B}$$
,

with $\vec{\mu}$ the magnetic dipole moment. For an atom the magnetic moment is given by

$$\vec{\mu} = -\frac{\mu_B(\vec{\ell} + 2\vec{s})}{\hbar},$$

with $\mu_B = e\hbar/2m$ the Bohr magneton, $\vec{\ell}$ the orbital angular momentum and \vec{s} the spin angular momentum. We want to calculate the effect of the Zeeman effect for the p-state of the alkali-metal atoms.

- 1. Give the quantum numbers ℓ and s of the p-state.
- 2. For a strong magnetic field, calculate the Zeeman shift for the p-state assuming the magnetic field is in the z-direction.

 The states are split by the spin-orbit interaction, which is given

The states are split by the spin-orbit interaction, which is given by

$$\mathcal{H}_{\mathrm{SO}} = \frac{\xi(r)\vec{\ell}\cdot\vec{s}}{\hbar^2},$$

where the function $\xi(r)$ is only a function of the radius r of the electron. In this exercise we will only use $A = \langle \xi(r) \rangle$.

3. What are the possible values of the quantum number j for the p-state, where \vec{j} is the total angular momentum: $\vec{j} = \vec{\ell} + \vec{s}$.

Hint: In this exercise we will neglect the effect of the nuclear spin I, since the shift caused by the nuclear spin is much smaller compared to the spin-orbit shift.

4. Show that $\vec{\ell} \cdot \vec{s}$ can be written as

$$\vec{\ell} \cdot \vec{s} = \frac{1}{2} (\ell_{+} s_{-} + \ell_{-} s_{+}) + \ell_{z} s_{z},$$

In the p-state of the alkali-metal atoms there are six magnetic substates, which are given in the uncoupled basis by

state	m_ℓ	m_s
1	-1	$-1/_{2}$
2	0	$-1/_{2}$
3	+1	-1/2
4	-1	+1/2
5	0	$+1/_{2}$
6	+1	$+1/_{2}$

5. Show that the spin-orbit interaction does not change $m_{\ell} + m_s$. For $m_{\ell} + m_s = +1/2$ the 2×2 submatrix for the Hamiltonian is given by

$$\mathcal{H}' = \mathcal{H}_{SO} + \mathcal{H}_Z = \begin{pmatrix} -A/2 & +A/\sqrt{2} \\ +A/\sqrt{2} & +\mu_B B \end{pmatrix},$$

with
$$A = \langle \xi(r) \rangle$$
.

- 6. Determine the eigenvalues for these two states.
- 7. At which strength of the magnetic field B is the spin-orbit interaction equal to the Zeeman interaction? Discuss your result.