Experimental Quantum Physics (Part III) – Exam

December 4, 2015

1 Virtual Particles

- 1. What are virtual particles, and which of the properties can in general be different from real particles? (2 points)
- 2. Give examples (minimum 2) of properties, which are the same between real and virtual particles. (2 points)
- 3. Explain the role of virtual photons as force carriers of the EM interaction and illustrate it with an example Feynman diagram. (2 points)

2 Scattering Kinematics

Study the scattering of a proton with $E_{\rm lab}$ off a proton at rest.

- 1. Give the rapidities and the four-momenta of the two colliding protons for $E_{\text{lab}} = 200 \,\text{GeV}$. (2 points)
- 2. Give an expression for \sqrt{s} as a function of E_{lab} . Calculate the value for $E_{\text{lab}} = 200 \,\text{GeV}$. (2 points)
- 3. Calculate the four-momenta of the protons in the CM system. (1 point)

3 Two-Body Decay

Study the decay $X \to e^+ + e^-$.

- 1. Give a formula for the calculation of the mass m_X of the parent particle as a function of the four-momenta of the decay products. (2 points)
- 2. Simplify the formula for $m_X \gg m_e$ to obtain a function of the energies and the opening angle. (2 points)

4 Feynman Diagrams

1. Which of the diagrams shown in Fig. 1 correspond to possible physical processes? For those that do not, give arguments why. (3 points)

Figure 1: Feynman diagrams of hypothetical processes.

2. What are the simplest Feynman diagrams for the reactions:

- (a) $e^+ + e^- \to e^+ + e^- + \gamma$.
- (b) $e^+ + e^- \to e^+ + e^- + \gamma + \gamma$.
- (c) $\gamma + \gamma \rightarrow e^+ + e^-$.

Discuss the relative cross sections of the processes in terms of powers of α . For reaction (b) there are four non-trivially different diagram of the lowest order - try to list them all. (4 points)