## Second Test Photon Physics



Peter van der Straten April 2015

## 1. Gausian beams

The electric field of a Gaussian laser beam is given by:

$$E_0(\vec{r}) = \frac{Ae^{i\phi(z)}}{\sqrt{1 + \left(\frac{z}{z_R}\right)^2}} \exp\left(\frac{ik\rho^2}{2R(z)}\right) \exp\left(\frac{-\rho^2}{w^2(z)}\right),$$

with  $\rho^2 = x^2 + y^2$ ,  $w(z) = w_0 \sqrt{1 + (z/z_R)^2}$ ,  $z_R = \pi w_0^2 / \lambda$ ,  $R(z) = z + z_R^2 / z$ , and  $\phi(z) = \arctan(z/z_R)$ 

- a) Describe in your own words the physical meaning of R(z), w(z),  $w_0$ ,  $z_R$  and  $\phi$ .
- b) Calculate the intensity I(x, y, z) of the beam given by  $I(x, y, z) = \varepsilon_0 c |E(x, y, z)|^2 / 2$ .
- c) Show that the power of the beam (i.e., the intensity integrated over the radial direction) does not depend on z, which you expect from conservation of energy.
- d) Determine the electric field at large distances  $(z \gg z_0)$ .
- e) Show why this field has the form of a spherical wave with its center of curvature located at the beam waist (z = 0).

## 2. Gaussian beam in a fiber

The index of refraction in the central part of a fiber (=core) is given by

$$n(r) = n_0(1 - r^2/2\ell^2),$$

with r the distance to the center of the fiber and  $\ell \approx 10^{-2}$  cm a material constant. The core has a diameter of 50  $\mu$ m. For a light ray impinging on the fiber we have the following relation for the distance r(z) to the center of the fiber:

 $r(z) = r_0 \cos \frac{z}{\ell} + r_0' \ell \sin \frac{z}{\ell},$ 

with  $(r_0, r'_0)$  the ray vector at the beginning of the fiber and z the distance in the fiber.

a) Prove that the ABCD-matrix M for this fiber is given by

$$M = \begin{pmatrix} \cos\frac{z}{\ell} & \ell\sin\frac{z}{\ell} \\ \frac{-1}{\ell}\sin\frac{z}{\ell} & \cos\frac{z}{\ell} \end{pmatrix}$$

Show that the determinant of this matrix is 1.

The q-parameter is given by

$$\frac{1}{q(z)} = \frac{1}{R(z)} - \frac{i\pi\lambda}{w(z)^2}.$$

Considering the length of fibers (many kilometers) the only possible Gaussian beam in the fiber has a q-parameter, that is independent of z.

- b) Calculate the q-parameter of this beam.
- c) Calculate the waist w of this beam.
- d) Calculate for visible light ( $\lambda = 600$  nm) the ratio between the intensity at the edge of the core and in the center of the core.
- e) Show that the losses due to the finite size of the core are small.

