
Software Testing & Verification 2013/2014

Universiteit Utrecht

2nd Jul. 2014, 13:30 - 16:30, BBL 001

Lecturer: Wishnu Prasetya

You are allowed to bring along the Appendix of the LN.

Part I [3pt (6× 0.5)]

For each question, choose one correct answer.

1. What is the weakest pre-condition of the following statement with respect
to the given post-condition?

{∗ ? ∗} x := x+y ; y := x+3 {∗ xy = 0; ∗}

(a) x2 + y2 + 2xy + 3x + 3y = 0

(b) 2x2 + 9x + 9 = 0

(c) (x+y)(x+3) = 0

(d) (x = 0) ∧ (y = 0)

2. What is the weakest pre-condition of the following statement with respect
to the given post-condition?

{∗ ? ∗} a[0] := a[0]− a[k] {∗ a[k]=0 ∗}

(a) a[k] = 0

(b) k = 0

(c) (k=0 → a[0]−a[k] | a[k]) = 0

(d) a(0 repby (a repby 0)− (a repby k))[k] = 0

1

3. Consider the following program to search for a prime number between a and
b. It’s body is not fully shown: body below is some statement, and e is some
expression. The parameter a is passed by value, and b by copy-restore. The
body is known to modify a and b.

find(a : int, OUT b : int) : bool { body ; return e }

Here is the specification of the program:

{∗ 0<a≤b ∗}

B0 := b ; find(a, OUT b)

{∗ (return = (∃x : a≤x<B0 : isPrime(x))) ∧ (return⇒ isPrime(b)) ∗}

Which of the following specifications is a correct reduction of the above spec-
ification to the corresponding specification of the program’s body?

(a) {∗ 0<a≤b∗}

body ; return :=e

{∗ (return = (∃x : a ≤x< b : isPrime(x))) ∧ (return⇒ isPrime(b)) ∗}

(b) {∗ 0<a≤b∗}

B0 := b ; body ; return :=e

{∗ (return = (∃x : a ≤x< B0 : isPrime(x))) ∧ (return⇒ isPrime(B0)) ∗}

(c) {∗ 0<a≤b∗}

A0, B0 := a, b ; body ; return :=e

{∗ (return = (∃x : A0 ≤x< B0 : isPrime(x))) ∧ (return⇒ isPrime(b)) ∗}

(d) {∗ 0<a≤b∗}

A0, B0 := a, b ; body ; return :=e

{∗ (return = (∃x : A0 ≤x< b : isPrime(x))) ∧ (return⇒ isPrime(b)) ∗}

2

4. Which of the following proofs is correct (according the the proof system of
the LN)? Read the steps carefully.

(a) PROOF

[A1:] (∀x :: P x)
[A2:] Q x

[G:] (∀x :: P x ∧ Q x)
1. { ∀-elimination on A1 } P x

2. { conjunction of 1 and A2 } P x ∧ Q x

3. { ∀-introduction on 2 } (∀x :: P x ∧ Q x)
END

(b) PROOF

[A1:] a = b

[G:] a ∨ (∃k :: x[k]) = b ∨ (∃k :: x[k])
1. { ∨-introduction } a ∨ (∃k :: x[k])
2. { ∨-introduction } b ∨ (∃k :: x[k])
3. { combining 1 and 2 } a ∨ (∃k :: x[k]) = b ∨ (∃k :: x[k])
END

(c) PROOF

[A1:] (∃x :: P x)
[A2:] Q a

[G:] (∃a :: P a ∧ Q a)
1. { ∃-elimination on A1 } P a

2. { conjunction of 1 and A2 } P a ∧ Q a

3. { ∃-introduction on 2 } (∃a :: P a ∧ Q a)
END

(d) PROOF

[A1:] ¬(∃x :: P x)
[A2:] P a

[G:] false

1. { ∃-introduction on A2 } (∃a :: P a)
2. { contradiction between A1 and 1 } false

END

5. A statement S satisfies the following specifications:

(a) {∗ P ∗} S {∗ Q1 ∗}
(b) {∗ Q2 ∗} S {∗ R ∗} ,where Q2 ⇒ Q1 (note the direction!)

Which of the folowing specifications is a valid consequence of (a) and (b)
above ?

(a) {∗ P ∗} S;S {∗ R ∗}
(b) {∗ P ∧Q2 ∗} S {∗ Q1 ∧R ∗}
(c) {∗ P ∨Q2 ∗} S {∗ Q1 ∧R ∗}
(d) {∗ P ∗} S;S {∗ Q2 ⇒ R ∗}

3

6. Consider the loop below; x is of type int and even(x) is a side-effect-free
function that checks if x is an even integer.

{∗ 1 < x < N ∗}

while x<N do { if even(x) then x := 2 ∗ x else x := x− 1 }

{∗ even(x) ∗}

Which of the predicates below is a correct invariant of the loop, that is enough
to prove that the above specification is valid, under the partial correctness
interpretation?

(a) 1<x ∧ (∃x :: even(x))

(b) (even(x)⇒ even(2x)) ∧ (¬even(x)⇒ even(x− 1))

(c) 1<x≤N ∧ even(x)

(d) x≥ N⇒ even(x)

Part II [7pt]

When asked to write a formal proof you need to produce one that is readable,
augmented with sufficient comments to explain and convincingly defend your steps.
An incomprehensible solution may lose all points.

1. [1.5 pt] Termination

Consider again this program, with the same pre-condition:

{∗ 1 < x < N ∗}

while x<N do { if even(x) then x := 2 ∗ x else x := x− 1 }

Use the Loop Reduction Rule (the inference rule for loop as discussed in the
lectures) to prove that this program terminates when executed on the given
pre-condition. You only need to prove termination; we do not care in which
state the program would terminate.

2. [3 pt] Loop

Here is a program to check if all elements of an array a[0..N) are the same.

{* N > 0 *} // pre-condition

i := 1 ;

uniform:= true ;

while i<N do {
uniform := uniform ∧ (a[i]=a[0]) ;

i := i+1

} ;

{* uniform = (∀k : 0≤k<N : a[k] = a[0]) *} // post-condition

Give a formal proof that the program is correct. You can skip the termination
proof.

4

3. [1.5 pt] Adding a break

The program from No. 2 can be improved by letting the loop to break when
a[i−1] 6= a[0]:

{* N > 0 *} // pre-condition

i := 1 ;

uniform:= true ;

while i<N ∧ a[i-1]=a[0] do {
uniform := uniform ∧ (a[i]=a[0]) ;

i := i+1

} ;

{* uniform = (∀k : 0≤k<N : a[k] = a[0]) *} // post-condition

Give a new formal proof of the loop Exit Condition, that will prove that using
the same invariant as in No. 2, the version above will also terminate in the
specified post-condition above.

(You only need to give a new PEC proof)

4. [1 pt] Program call

Consider the following specification of the program P:

{∗ y>0 ∗} Y := y; P(x:int, OUT y:int) {∗ (return+y)/Y > x ∗}

Consider this call to P:

{∗ k>0 ∗} r := P(k−2, k) {∗ r+k>0 ∗}

To prove the correctness of the call, we first transform the call to the following
equivalent statement:

{∗ k>0 ∗}
{∗ (1) ? ∗} @x := k-2 ;

{∗ (2) ? ∗} @y := k ;

{∗ (3) ? ∗} r := P(@x,@y) ;

{∗ (4) ? ∗} k := @y ;

{∗ r+k>0 ∗}

(a) Fill in the intermediate predicates (1)..(4) above. Calculate them using
the weakest-precondition function, and for (3) use the Black Box reduc-
tion rule for program call.

Just give the answers; you do not have to show the calculation.

(b) Based on your calculation above, is the call correct? Motivate your
answer.

5

