Software Testing & Verification 2013/2014
Universiteit Utrecht

2nd Jul. 2014, 13:30 - 16:30, BBL 001

Lecturer: Wishnu Prasetya

You are allowed to bring along the Appendix of the LN.

Part I [3pt (6 x 0.5)]

For each question, choose one correct answer.

1. What is the weakest pre-condition of the following statement with respect
to the given post-condition?
{x 7%} x:=x+y; y:=x+3 {xxy =0;%}
(a) x2+y*+2xy+3x+3y = 0
(b) 2x2+9x+9 = 0
() (x+y)x+3) = ©
(d) (x=0)A(y=0)

2. What is the weakest pre-condition of the following statement with respect
to the given post-condition?

{* 7%} al0] :=al0] —a[k] {*ak]=0x*}

(a) alk]=0

(b) k=0

(c) (k=0 — al0]—alk] | alk]) = ©

(d) a(0repby (arepby 0) — (arepby k))k] = 0

3. Consider the following program to search for a prime number between a and
b. It’s body is not fully shown: body below is some statement, and e is some
expression. The parameter a is passed by value, and b by copy-restore. The
body is known to modify a and b.

find(a: int, OUT b: int) : bool { body ; return e }
Here is the specification of the program:
{* 0<a<b x}
Bo :=b; find(a,QUT b)
{* (return = (Ix : a<x<Bp : isPrime(x))) A (return = isPrime(Db)) *}

Which of the following specifications is a correct reduction of the above spec-
ification to the corresponding specification of the program’s body?

(a) {+ 0<a<by}

body ; return :=e

{* (return = (Ix: @§X<@ : isPrime(x))) A (return = isPrime(@)) *}

(b) {* 0<a<bx}

Bo ;=D ; body ; return :=e

{* (return = (Ix: @§x< : isPrime(x))) A (return = isPrime()) *)

(c) {* 0<a<bx}

Ao,Bo := a,b; body ; return :=e

{* (return = (Ix : §x< : isPrime(x))) A (return = isPrime(@)) *}

(d) {* 0<a<bx}

Ao,Bo :=a,b; body ; return :=e

{* (return = (3x : §x<@ : isPrime(x))) A (return = isPrime(@)) *}

4. Which of the following proofs is correct (according the the proof system of
the LN)? Read the steps carefully.

(a) PROOF
[A1:1 (Vx:Px)
[A2:] Qx

[G:] (Vx=PxAQx)

1. { V-elimination on A1 } Px

2. { conjunction of 1 and A2 } PxAQx
3. { V-introductionon 2 } (Vx:PxAQx)
END

(b) PROOF
[A1:] a=b
[G:1] aV(Tk:uxk]) = bV (Ik:x[K])
1. { V-introduction } aV (Jk: x[k])
2. { v-introduction } bV (Fk: x[k])
3. { combining 1 and 2 } aV (Ik:xk]) = bV (Ik:xk])

END

(c) PROOF
[A1:] (Ix:=Px)
[A2:] Qa

[G:] (Ja:PaAQa)

1. { F-eliminationon Al } Pa

2. { conjunction of 1 and A2 } PaAQa
3. { -introductionon2 } (Ja:PaAQa)

END
(d) PROOF
[A1:] —(dx::Px)
[A2:] Pa
[G:]1 false

1. { J-introduction on A2 } (Ja::Pa)
2. { contradiction between Al and 1 } false
END

5. A statement S satisfies the following specifications:

(@) {xPx} S {xQix}
() {*xQ2x} S {x Rx} ,where Q2 = Q1 (note the direction!)

Which of the folowing specifications is a valid consequence of (a) and (b)
above ?

{x Px} 5;S {x Rx«}
{*P/\Qg*} S {*QIAR*}

{x PVQax} S {xQuARx*}
{x Px} S;S5 {x Q2= R}

(a
(b
(c
(d

D D

6. Consider the loop below; x is of type int and even(x) is a side-effect-free
function that checks if = is an even integer.

{x1<x<N=x}
while x<Ndo { if even(x) thenx:=2%x elsex:=x—1}
{x even(x) x}

Which of the predicates below is a correct invariant of the loop, that is enough
to prove that the above specification is valid, under the partial correctness
interpretation?

(a) 1<x A (3x :: even(x))

(b) (even(x) = even(2x)) A (—even(x) = even(x — 1))
(¢) 1<x<N A even(x)
(d) x> N = even(x)

Part II [7pt]

When asked to write a formal proof you need to produce one that is readable,
augmented with sufficient comments to explain and convincingly defend your steps.
An incomprehensible solution may lose all points.

1. [1.5 pt] Termination

Consider again this program, with the same pre-condition:
{1 <x<Nx}
while x<Ndo { if even(x) thenx:=2xx elsex:=x—1}

Use the Loop Reduction Rule (the inference rule for loop as discussed in the
lectures) to prove that this program terminates when executed on the given
pre-condition. You only need to prove termination; we do not care in which
state the program would terminate.

2. [3 pt] Loop
Here is a program to check if all elements of an array a[0..N) are the same.

{* N>0 =*} // pre-condition

i:=1;
uniform:= true ;
while i<N do {

uniform := uniform A (al[il=al[0]) ;
i = i+1
Yo
{* uniform = (Vk:0<k<N:alk]=al0]) *} // post-condition

Give a formal proof that the program is correct. You can skip the termination
proof.

3. [1.5 pt] Adding a break

The program from No. 2 can be improved by letting the loop to break when
a[i—1] # a[0]:

{* N>0 =*} //pre-condition

i:=1;
uniform:= true ;

while i<N A |a[i-1]=a[0]| do {

uniform := uniform A (al[il=al[0]) ;
i = i+1
Yo
{* uniform = (Vk:0<k<N:alk]=al0]) *} // post-condition

Give a new formal proof of the loop Exit Condition, that will prove that using
the same invariant as in No. 2, the version above will also terminate in the
specified post-condition above.

(You only need to give a new PEC proof)

4. [1 pt] Program call

Consider the following specification of the program P:

{xy>0 %} Y:=y; P(x:int,0UT y:int) {* (return+y)/Y > x x}
Consider this call to P:

{xk>0 %} r:=P(k—2,k) {*xr+k>0x*}

To prove the correctness of the call, we first transform the call to the following
equivalent statement:

{x k>0 x}

{x (1) 7%} ©x := k-2 ;
{x(2) 7%} @y :=k ;

{x(3) 7%} r :=P(6x,0y) ;
{x(4) 7%} k := @y ;

{* r+k>0 *}

(a) Fill in the intermediate predicates (1)..(4) above. Calculate them using
the weakest-precondition function, and for (3) use the Black Box reduc-
tion rule for program call.

Just give the answers; you do not have to show the calculation.

(b) Based on your calculation above, is the call correct? Motivate your
answer.

