Software Testing & Verification 2013/2014
Universiteit Utrecht

2nd Jul. 2014, 13:30 - 16:30, BBL 001

Lecturer: Wishnu Prasetya

You are allowed to bring along the Appendix of the LN.

Part I [3pt (6 x 0.5)]

For each question, choose one correct answer.

1. What is the weakest pre-condition of the following statement with respect
to the given post-condition?
{x 7%} x:=x+y; y:=x+3 {xxy =0;%}
(a) x2+y*+2xy+3x+3y = 0
(b) 2x2+9x+9 = 0
() (x+y)x+3) = ©
(d) (x=0)A(y=0)

Answer: Just do the substitution (in the correct order). If you the simplify
the result, the answer is (a).

2. What is the weakest pre-condition of the following statement with respect
to the given post-condition?

{* 7} al0]:=al0] —a[k] {xalk]=0x*}

(a) alk]=0

(b) k=0

(c) (k=0 — alo]-ak] | alk]) = o

(d) a(0repby (arepby 0) — (arepby k))k] = 0

Answer: ¢



3. Consider the following program to search for a prime number between a and
b. It’s body is not fully shown: body below is some statement, and e is some
expression. The parameter a is passed by value, and b by copy-restore. The
body is known to modify a and b.

find(a: int, OUT b: int) : bool { body ; return e }
Here is the specification of the program:
{* 0<a<b x}
Bo :=b; find(a,QUT b)
{* (return = (Ix : a<x<Bp : isPrime(x))) A (return = isPrime(Db)) *}

Which of the following specifications is a correct reduction of the above spec-
ification to the corresponding specification of the program’s body?

(a) {+ 0<a<by}

body ; return :=e

{* (return = (Ix: @§X<@ : isPrime(x))) A (return = isPrime(@)) *}

(b) {* 0<a<bx}

Bo ;=D ; body ; return :=e

{* (return = (Ix: @§x< : isPrime(x))) A (return = isPrime()) * )

(c) {* 0<a<bx}

Ao,Bo := a,b; body ; return :=e

{* (return = (Ix : §x< : isPrime(x))) A (return = isPrime(@)) *}

(d) {* 0<a<bx}

Ao,Bo :=a,b; body ; return :=e

{* (return = (3x : §x<@ : isPrime(x))) A (return = isPrime(@)) *}

Answer: ¢



4. Which of the following proofs is correct (according the the proof system of
the LN)? Read the steps carefully.

(a) PROOF
[A1:] (Vx:Px)
[A2:] Qx

[G:1] (Vx:PxAQX)

1. { V-elimination on A1 } Px

2. { conjunction of 1 and A2 } PxAQx
3. { V-introductionon 2 } (Vx:PxAQx)
END

(b) PROOF
[A1:] a=D
[G:1] aV(Tk:xk]) = bV (Ik:x[K])

1. { V-introduction } aV (Jk: x[k])
2. { Vv-introduction } bV (Ik:: x[k])
3. { combining 1 and 2 } aV (k:xk]) = bV (Ik:xk])
END
(c) PROOF
[A1:1] (Fx:=:Px)
[A2:] Qa

[G:] (Ja:PaAQa)

1. { J-elimination on A1 } Pa

2. { conjunction of 1 and A2 } PaAQa
3. { -introductionon 2 } (Ja:PaAQa)

END
(d) PROOF
[A1:] —-(3x=Px)
[A2:] Pa
[G:] false

1. { Z-introduction on A2 } (Ja::Pa)
2. { contradiction between Al and 1 } false
END

Answer: d

5. A statement S satisfies the following specifications:

(@) {xPx} S {xQix}
(b) {*xQ2x} S {* R} ,where Q2 = Q1 (note the direction!)

Which of the folowing specifications is a valid consequence of (a) and (b)
above 7

{x Px} S;S {xR=x}
{* PAQ2x} S {x Qi AR}

{*P\/QQ*} S {*QIAR*}
{x Px} S;S {x Q2= R x}

(a
(b
(c
(d

—_ = D



Answer: b

6. Consider the loop below; x is of type int and even(x) is a side-effect-free
function that checks if = is an even integer.

{*1<x <Nx}

while x<Ndo { if even(x) thenx:=2xx elsex:=x—1}
{* even(x) *}

Which of the predicates below is a correct invariant of the loop, that is enough
to prove that the above specification is valid, under the partial correctness
interpretation?

(a) 1<x A (3x :: even(x))
(
(¢) 1<x<N A even(x)

)
b) (even(x) = even(2x)) A (—even(x) = even(x — 1))
)
(d) x> N = even(x)

Answer: a and b won’t imply the post condition; ¢ is not implied by the
pre-condition. The candidate left is d. It implies the post-condition, and can be
established by the pre-condition. Calculating its wp over the loop’s body gives:

(even(z) = (2z > N = even(2z))) A (—even(z) = (x—1 > N = even(z — 1)))

The first conjust is valid due to even(2x). The second conjunct is implied by
the guard = < N, which implies that x—1 > N cannot be true.
So, the answer is indeed (d).

Part II [7pt]

When asked to write a formal proof you need to produce one that is readable,
augmented with sufficient comments to explain and convincingly defend your steps.
An incomprehensible solution may lose all points.

1. [1.5 pt] Termination

Consider again this program, with the same pre-condition:

{1 <x <Nx}

while x<Ndo { if even(x) thenx:=2x%x elsex:=x—1}

Use the Loop Reduction Rule (the inference rule for loop as discussed in the
lectures) to prove that this program terminates when executed on the given
pre-condition. You only need to prove termination; we do not care in which
state the program would terminate.

Answer: Using I : 1 < z and m = even(x) - N—z | N+2. Implicitly
N > 1 is part of the invariant, since the loop does not change the value of N.

If the guard z < N is true, N—x as well as N+2 are > 0. So, m has a lower
bound.



To show that m decreases, we calculate the weakest pre-condition of:
l<zAz <N = wp (C:=m; body) (m<C)
Calculating the wp gives:
(even(z) = (even(2z) - N—2z | N+2) < (even(xz) - N—z | N+2))
E\—\even(a?) = (even(z—1) - N—22+2 | N+2) < (even(z) —» N—z | N+2))
This can be simplified to:

(even(z) = N—2x < N—z) A (—even(z) = N—2z+2 < N+2)

Both conjuncts are implied by the pre-conditon 1 < =z.

It remains to be proven tha the invariant ¢ < z can be maintained. Calculating
the wp gives us:

(even(z) = 1<2z) A (-even(z)=1<z—1)

The left conjunct is obviously impied by I : 1 < z. For the second conjunct,
notice that if x is odd, and 1 < x, then = > 3. So, z—1 > 1.

Done.

. [3 pt] Loop

Here is a program to check if all elements of an array a[0..N) are the same.

{* N>0 =*} //pre-condition

i=1;
uniform:= true ;
while i<N do {

uniform := uniform A (alil=al[0]) ;
i = i+1
b
{* uniform = (Vk:0<k<N:alk]=a[0]) *} // post-condition

Give a formal proof that the program is correct. You can skip the termination
proof.

Answer: Grading: 0.5 pt Pinit, 2 pt PIC, 0.5 pt EC. No separate point for
the invariant; wrong invariant will show up in the proofs anyway.

Bad proof styles (BPS): deduction up to 1 pt.
Incorrect inv: 0.3 pt to maximum.

We'll this this invariant I:
1<i<N A (u= (Vk: 0<k<i: alk] = a]0]))

Here, I will only give a sketch of the proof. PEC is quite trivial. For Pinit,
we have to prove:

N>0 = wp (i:=1; u:=true) I



Calculating the wp gives:
1<1<N A (true = (Vk : 0<k<1: alk] = a[0]))

which is not difficult to prove.

For PIC we have to prove:

INi<N = wp(u:=uA(afi] =al0]) ; i:=i+1) I
Calculating the wp gives:

1<i+1<N A (uA (afi] = a[0]) = (Vk : 0<k<i+1 : alk] = a]0]))
The first conjuct is not difficult to prove. For the second conjunct:

PROOF EQUATIONAL

(Vk : 0<k<i+1:alk] = a[0])

= { domain merge, 0 <7 }
(Vk:0<k<iV (k=1):alk] = a[0])
= { domain split }

(Vk : 0<k<i:alk] =a[0]) A (Vk:k=1i:alk] = al0])
={1}

u A (Vk:k=1i:alk]=al0])

= { quatification over singleton }
u A (ali] = a0])

END

3. [1.5 pt] Adding a break

The program from No. 2 can be improved by letting the loop to break when
a[i—1] # a[0]:

{* N>0 =*} // pre-condition

iz:=1;
uniform:= true ;

while i<N A |a[i-1]=al0]| do {

uniform := uniform A (al[il=al[0]) ;
i = i+1
Yo
{* uniform = (Vk:0<k<N:alk]=al0]) *} // post-condition

Give a new formal proof of the loop Exit Condition, that will prove that using
the same invariant as in No. 2, the version above will also terminate in the
specified post-condition above.

(You only need to give a new PEC proof)
Answer:

PROOF PEC

[A1:] u=(Vk:0<k<1i:alk]=a0])
[A2:1 1 <i<N



[A4:]1 i >NVali— 1] # al0]

[G:] u= (Vk:0 <k <N:alk] = al0])

1. { this was already proven in No. 2 } i >N =G
2. { see subproof below } (a[i — 1] # a[0]) = G

PROOF sub

[A1:]1 a[i— 1] # a[0]

[G:] same as PEC.G

{ follows from PEC.A2 } 0 <i-1<i

{ follows from PEC.A2 } 0 <i—-1<N

{ Fintroon 1 and Al } (Fk: 0 <k <i:af
{ F-introon 2 and Al } (Fk: 0 <k < N: a[k]
{ negation of Von 3 } =(Vk: 0 <k < 1i:alk]
{ negation of Von 4 } =(vk:0 <k <N: afk]
{ rewrite 5 with PEC.A1 } —u

{band 7} —u=—=(Vk:0 <k <N:alk] = al0])
{ follows form 8 } u=(Vk: 0 <k <N:alk]=a
END

© 20N AW

END

. [ 1 pt] Program call

Consider the following specification of the program P:

{xy>0 %} Y:=y; P(x:int,0UT y:int) {* (return+y)/Y > x *}
Consider this call to P:

{xk>0#} r:=P(k—2,k) {*xr+k>0x*}

To prove the correctness of the call, we first transform the call to the following
equivalent statement:

{x k>0 x}
{x (1) 7%} @x := k-2 ;
{x(2) 7%} @y :=k ;

{*x(3) 7%} r := P(0x,Qy) ;
{x(4) 7%} k := @y ;
{*x r+%k>0 *}

(a) Fill in the intermediate predicates (1)..(4) above. Calculate them using
the weakest-precondition function, and for (3) use the Black Box reduc-
tion rule for program call.

Just give the answers; you do not have to show the calculation.
Answer: For the purpose of applying the Black Box rule, you can
treat the special variable return as if it is an implicit OUT-parameter.
So, it is as if P has this header: P(x, OUT y, OUT return), and the call
r := P(@x, @y) can be seen as P(@Qx, Qy, r).

4 : r+Qy>0

3 Qy>0 A ((r"+vy)/Qy>Qzr = ' +y >0)
2 k>0AN (M+y)/k>Qx = 1 +y >0)

1 E>0 A (("+y)/k>k=2 = r+y >0)



(b) Based on your calculation above, is the call correct? Motivate your
answer.

Answer: No. The implication in the second conjunct is not implied by
the given pre-condition. For example if both 7’ and 3’ are 0, then 7’ + 3/
is not > 0.



