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(1) Let {W(¢t) : t > 0} be Brownian motion. Compute fot sin(W(s)) dW (s), and express your answer
in the form fot h(W(s))ds 4+ g(W(t)), for explicit deterministic functions h and g. (1.5 pts)

Proof: Let f(z) = cos(z), then f is continuously differentiable, with f'(z) = —sin(z) and
f"(x) = — cos(x). By Ito’s Lemma, we have

cos(W(t)) = cos(W(0)) — /0 sin(W(s)) dW(s) — /0 %COS(W(S)) ds.
Since cos(W(0)) = 1, we have
‘1

—cos(W(s))ds.

/0 sin(W(s)) dW(s) = 1 — cos(W (t)) 7/0 >

The result follows with f(z) =1 — cos(z) and g(z) = — cos(z).

(2) The evolution of a stock price S(t) is modeled by

S(t) — e[ttJrO'W(t) ,

where W (t) is a standard Brownian motion with filtration {F(¢) : ¢ > 0}, and p and o > 0 are
real parameters. Assume that the initial value of the stock is S(0) = 1.

(a) Determine an expression for P(S(t) < z), for > 0. (0.5 pts)

(b) Derive expressions for the median, and expectation of S(t). Note that the median is the
value m such that P(S(t) <m)=1/2. (1 pt)

(c¢) Determine an expression for the conditional expectation E[S(t)|F(s)] with s < t. Find
conditions on p and o under which the price process {S(¢) : t > 0} is a martingale with
respect to the filtration {F(¢) : ¢t > 0}. (1 pt)

Proof (a): Note that W (¢) is normally distributed with mean 0 and variance ¢, hence the random
t
variable Z(t) =
(t) N
< Inx — ut

P(S(t) < z) = P(eM+oWO < 2y = P(W(t) <

is standard normal. Now,

Inx — put

B Inx — pt
)=P(Z(t) < Y

o T ot

where N denotes the standard normal distribution function.

) = N( );

Proof (b): We are looking for the value of m such that
Inm — ut

< ——)=1/2.

s— 7 7Y

Since Z(t) is a symmetric standard normal random variable, the median of Z(t) is 0. This

Inm — pt

oVt

note that the moment generating function of the standard normal random variable Z(t) satisfies
E(es?) = e3s”. Now

P(S(t) <m) = P(Z(t)

implies that = 0 leading to m = e**. To calculate the expectation of S(t), we first

E(S(t)) _ E(eutJrUW(t)) _ eutE(ea\/fZ(t)) _ euteég% _ et(;H»%U?).
1



Proof (c): For s < t we have, S(t) = S(s)ett=)teWH=W()) - Furthermore, S(s) is F(s)-
measurable, and W (t) — W (s) is independent of F(s). Thus,

B(S(1)| F(s)) = S(s)e =9 BerWOTWED) = g(g)elrtir),

the last equality follows from the moment generating function of the normally distributed random

variable W (t)—W (s). For the process S(t) to be a martingale, we must have E(S(¢) | F(s)) = S(s)

for s < t. This leads to e(*+37°)(t=) = 1 or equivalently, yu = —30°.

Let {Bi(t) : t > 0} and {Ba(t) : t > 0} be a pair of correlated Brownian motions with
dBi (t)dBs(t) = p(t)dt,

with {p(t) : ¢ > 0} a stochastic process taking values in [—1, 1] which is adapted to the filtration
{F(t) : t > 0} generated by the Brownian motions Bj(¢) and Bz(t). Define two processes W1 (t)
and Ws(t) by

AW, (t) = dB1 (1),

and

dWa(t) = a(t)dBi(t) + B(t)dBa(t),
with {a(t) : ¢t > 0} and {5(¢) : t > 0} adapted processes, and ﬁ( ) > 0 for t > 0. Find the values
of a(t), B(t) such that the random process {(W1(t), Wa(t)) : t > 0} is a 2-dimensional Brownian
motion. (2 pts)

Proof: We use Levy characterization of a two-dimensional Brownian motion (Theorem 4.6.5).
By definition of W7 () and Wa(t), it follows directly that Wi (¢) is a Brownian motion and Wh(t)
is a martingale with continuous paths and W5(0) = 0. It remains to find the values of «(t) and
B(t) such that the quadratic variation of Wa(t) is ¢t which will imply that {Wa(¢) : t > 0} is a
Brownian motion, and the cross-variation of Wi (t) and Wa(t) is zero which implies that Wi (t)
and Wa(t) are independent. Thus, we want

AWa(H)AWa(t) = (a2(t) + B2(t) + 20(H)a(t)B(1))dt = dt,
and
dW1(t)dWa(t) = (a(t) + B(t)p(t))dt = 0.
These lead to the system
(1) + B2(t) + 2p(t)a(t)B(t) =1,

and

Solving we get B(t) =

Suppose that the stock price S(t) is a geometric Browninan motion, i.e.
dS(t) = aS(t) dt + oS(t) dW (t),
where W (t) is a Brownian motion on a probability space (2, F, P) with filtration {F(¢) : t > 0}.

_r _
. Consider the process
o

Z(t) = e WO~ (30%,

Let r be the interest rate, and 0 =

(a) Show that
dZ(t) = —0Z(t) dW (t) — rZ(t) dt.
(0.5 pts)

(b) Consider the portfolio process X (¢t) = A(t)S(t) + (X (t) — A(t)S(¢t)). Show that {Z(t)X (t) :
t > 0} is a martingale with respect to the filtration {F(¢) : ¢t > 0}. (1 pt)
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(¢) Let T'> 0 be a fixed terminal time, and assume F = F(T'). Let V(T') be an F(T')-measurable
function (thought of as the payoff of a derivative with expiration date T'). Show that if an
investor wants to begin with some initial value X (0) and invests in order to have a portfolio
with value V(T') at time T, then he must begin with initial capital X (0) = E[Z(T)V (T)].
(0.5 pts)

Proof (a): We apply Ito-Doeblin’s formula to the function f(¢,z) = e=07=(r+36*)t  Note that
ft(tv:r’) = _(T + %QQ)f(ta 1?)7 fx(t,l‘) = —9f(t,$) and fxx(ta‘r) = 02f(t7$) NOWv

dZ(t) = d(f(t, W (t)) = —(r + %OQ)Z(t)dt —0Z(t)dW (t) + %92(# = —rZ(t)dt — 0Z(t)dW (t).

Proof (b): It suffices to show that Z(¢)X(t) is an Ito-integral. We know that the underlying
stochastic differential equation of X (¢) is given by

dX(t) = A@)dS(t) +r(X(t) — A@)S(t))d(t).
Replacing dS(t) = aS(t) dt + oS(t) dW (t) we get
dX(t) =rX(t)dt + A(t) (o — r)S(t)dt + A(t)oS(t)dW (¢).
We now apply Ito’s product rule, we have
d(Z(t)X(t)) = Z(t)dX () + X (t)dZ(t) + dX (t)dZ(t).
Using the equalities dZ(t) = —rZ(t)dt — 0Z(t)dW (t), dX(t) = r X (t)dt + A(t)(a — r)S(t)dt +
A(t)oS(t)dW (t) and 0 = o — r we get
d(Z(t)X(t)) = (A(t)aS(t)Z(t) - 9X(t)Z(t)>dW(t).
This implies that Z(¢)X (t) is an Ito-integral and hence a martingale.
Proof (c): Our portfolio should satisfy X(T') = V(T') and hence Z(T)X(T) = Z(T)V(T). By
part (b), {Z(t)X(¢)} is a martingale, hence
X(0) = Z(0)X(0) = E(Z(T)X(T)) = E(Z(T)V(T).

(5) Let {W(¢t) : 0 <t < T} be a Brownian motion on a probability space (Q2, F, P), and let {F(¢) :
0 <t < T} be the filtration generated by the Brownian motion. Let {O(¢) : 0 < t < T} be
a bounded adapted process. Use Girsanov’s Theorem as well as the Martingale Representation
Theorem to show that if Y is an F(7') measurable function, then there exist a constant  and an
adapted process {a(t) : 0 <t < T} such that

Y=x+ /T a(t)O(t)dt + /T a(t)dW (t).
(2 pts) i 0
Proof : Let Z(t) = e~ Jo OWdW (w)=3 [§€°(wdu  4p4 W(t) = W(t) + fot@(u)du. Consider
measure P satisfying dP = Z(T)dP. Since the process {©(t) : 0 < ¢t < T} is bounded, then
E(fOT 02(u)Z?(u) du) < oo as well as E(fOT 02(u)Z%(u) du) < 00, by Girsanov’s Theorem

(in fact Corollary 5.3.2), {W(t) : 0 < ¢ < T} is a Brownian motion under the measure P. Now,
let Y be an F(T') measurable function, and define X(t) = E(Y | F(t)) for 0 < ¢t < T. Then,

{X(t) : 0 <t < T} is a martingale under the measure P. Since Y is an F(T') measurable, we
have X(T) = E(Y |F(T)) = Y. By the Martingale Representation Theorem, there exists an

adapted process {a(t) : 0 <t < T} such that
t t t
X(t) = X(0) +/ a(w)dW (u) = X(0) +/ o(u)O(u)du +/ a(w)dW(u), 0 <t <T.
0 0 0
Now set x = X (0), since Y = X(T'), we have

Y =a+ /T a(t)O(t)dt + /Ta(t)dW(t).

0 0



