Final Exam Advanced Statistical Physics: NS-370B, Nov. 4, 2014, 13:30-16.30.
The exam consists of 4 exercises, each worth 25 points. This is a closed-book exam, i.e.
notes and electronic devices are not allowed. Please start every exercise on a new sheet of
paper, with your name clearly written on every page. The exam can be written in either
English or Dutch, but unreadable work will not be graded!

A few formulas and information that may or may not be useful in this exam:

e The canonical partition function of a classical thermodynamic system of N identical
particles in a volume V' a temperature T with Hamiltonian H(I'} is written as
Z(N,V,T) = 1/(Nh3) J dT exp[-BH(T)], where 5! = kgT.

¢ The grand partition function of identical particles is
=g, V\T) = XX _oexp(BuN)Z(N,V,T), and the grand-canonical distribution is
fo(T, N) = exp|BuN — BH(T))/[Nh3NZ(u, V, T)], with g the chemical potential.

» The second virial coefficient is By(T") = (1/2) [ dr[1—exp(—S¢(r))] for pair potential
(r).

e The two-body distribution function reads

%/drg---dm exp[—B®(ry,- -+, 1n)] (1)

with Qn(V,T) = [dr, - -dryexp[-B®(ry,---,ry)| the configurational integral.
e kg =113 x107B8J/K, e = 1.6 x 107'°C, and R = 8.31J/K/mol.

P (ry, ra) =

e The binomial coefficient {i.e. m choose n, which is the number of ways n object can
be choosen from m objects) is given by ((m_Ln'),n,)

o Stirling’s approximation to order O(N) is given by log(N!) = Nlog N — N.

e The Taylor series of f(z) around z = a is given by f(z) = f(a) + f—’l(,ﬂ(a: —a) +
%l(z—a)2+ﬂ%ﬂ(m—a)3+---.

e From the Taylor series we get: e = ¥, %’,’

e The following critical exponents for the Ising model:

— B is associated with the spontaneous magnetization.

— « is associated with the specific heat when the external field is zero
— 7 is associated with the zero field susceptibility

— ¢ is associated with the magnetization at the critical temperature

¢ In a dielectric medium with relative dielectric constant ¢ the electrostatic potential
¥(r) and the charge density eQ(r) are related by the Poisson equation

2 1 4meQ(r)
Vi(r) = 7 A (2)

where ¢ is the vacuum permittivity (in SI units).



1. We consider a classical binary mixture of N, particles of species 1 and N, particles
of species 2 in a volume V at temperature T. The particles are point particles with
mass m,; and ms, respectively, and they interact with each other through pairwise
potentials ¢q;(r), d12(r), and ¢o2(r), where 7 is the center-to-center seperation be-
tween a 1-1-pair, a 1-2 pair, and a 2-2 pair, respectively. The densities are denoted
by p; = N;/V for species i = 1, 2.

(a) Give, as explicitly as possible, an expression for the canonical partition function
Z(Ny, No, V,T).

(b) Calculate the Helinholtz free energy F(Ny, N», V, T') and the pressure p{p;, p2, T')
for the ideal-gas case ¢;;(r) = 0.

(¢) If the particles are hard spheres with diameters oy and 4, calculate the pressure
p within the second-virial approximation.

A computer simulator calculates the Gibbs free energy G of this mixture for many
compositions z = N;/(N; + N,) and for many pressures p at one fixed T. He/she
finds that G(Ny, No, p, T) = (N1+No)kgT (:1: Inz+(1-z)In(l-=z)-— %ca:z), where
c is independent of z but depends on p as ¢(p) = (=1 + p/po) with py = 1 atm.

(d) Calculate the critical pressure p, and the critical composition z., and sketch
the spinodal and the binodal of the phase diagram in the composition-pressure
(z-p) representation with z € [0, 1] and p € {0, 10] atm.

{e) Give the functional form of the binodal p{x) in the vicinity of the critical point
in terms of p,, z. and a suitable critical exponent, and briefly describe the
equilibrium state of the system for = = z. at (i) p < 0.9p, and (ii) p > 1.1p,.

2. We consider a homogeneous fluid of N = pV identical particles at positions r; in
a volume V at temperature T. The potential energy ®(r") = T ¢(|r; — 1;))
is pairwise. Because of translational invariance the two-body distribution can be
written as p\?(r;,r2) = p?g(|r; — r4).

{a) Show that the thermal avarage of the potential energy can be written as
(@) = 2mp®V [° drr2g(r)o(r). :

(b) Show that the structure factor, defined as S(g) = (Z;’\; expliq - (r; — r;)])
with q the scattering vector and ¢ = |q| its wavenumber, can be written as
S(q) = 1+ pJdr(g(r) — 1) exp(iq - r) + (27)°pé(q).

(c) Define the total correlation function 2(r) = g(r) — 1. Use the Ornstein-Zernike
equation h(r12) = ¢(r12) + p f drsc(r13)h(ra2) to show that S(q) = (1 - pé(q))~"
for ¢ # 0.

(d) For the case of a Lennard-Jones fluid (diameter &, well-depth €), sketch in five
separate plots (i) the phase diagram in the p-T representation, (ii) the g(r)
in the dilute limit p — 0 at the critical temperature, (iii) the g(r) at packing
fraction 0.49 in the high-T limit, (iv) the S(g) close to the critical point, and
(v) the S(q) at the triple-point liquid. Label the sketches carefully (i}-(v), and
put (estimated) scales on the axes of all five sketches.

(e) If the Helmholtz free energy per unit volume is given by f(p,T) = pksT(—1+
In T‘_"’Tp) — ap?, with positive constants a and b, calculate the pressure p(p, T).
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3. Consider a simple model for a surface of area A = Ma? which consists of M adsorp-
tion sites which are arranged on a square lattice with spacing a. Assume that the
surface is in contact with a gas reservoir at temperature 7" and chemical potential p.
The molecules of the gas are indistingnishable and can be adsorbed onto one of the
lattice sites, but each lattice site can only adsorb a single molecule at most. Further
assume that an occupied site has binding energy €. Note that for a two-dimensional
system (such as an adsorbed layer) the area A and surface pressure II play the same
role as the volume V and pressure P in a three-dimensional system.

(a) Assume that there are exactly N molecules adsorbed onto the surface and cal-
culate the canonical partition function of the adsorbed gas.

(b) Compute the grand partition function Z(u, A, T') of the adsorbed gas and express
IT as a function of u, A,T.

(¢) Calculate {N) and determine the average fraction of sites f that are occupied.

(d) Use the quantities you just derived to calculate the equation of state I(f, T).
What is the surface pressure in the limit of low coverage. Is this what you would
expect? Explain.

4. Consider a homogeneous surface in the plane z = 0 in contact with the halfspace
z > 0 filled with a liquid electrolyte of relative dielectric constant € at temper-
ature T containing pointlike divalent salt ions (with charges +2e and —2e); the
Bjerrum length is Ag = e?[(4meg)ekpsT] ™. Far from the wall (2 = oo), where the
electric potential is set to zero, the ion concentration is p, for both the cations
and the anions. The local concentration p,(z) of the cations and p_(z) of the
anions are related to the electric potential kgT¢(z)/e by the Poisson equation
¢"(z) = —dnrp(p(2) — p-(2) + 068(z)), where ec is the surface charge density
on the wall and where a prime denotes a z-derivative.

(a) Assume properly scaled Boltzmann distributions for p+(z) and derive a (non-
linear) differential equation for ¢(z) and boundary conditions ¢{co) = 0 and
¢'(0%) = —drnAgo.

(b) Show that ¢”(z) = k2¢(2) for low potentials and derive an expression for 2.

(c) Solve the equation of (b) with the boundary conditions mentioned in (a), and
interpret the result in a few words.

We consider N needle-shaped particles of length L and diameter D <« L that
perform Brownian motion in a liquid of volume V. Initially at time £ = O the
volume V is so large that V >»> NL?D, but due to an evoporation process the
volume V very slowly shrinks to become of the order N L2D at time t = 71 and of
order NLD? at an even later time 7, while T', N, L and D stay fixed.

(d) Give or calculate the order of magnitude of the excluded volume Ej of a parallel
pair of these rods and E, of a perpendicular pair.

(e) Briefly describe the state of this suspension at times ¢t =0, =7, and ¢t = 7.
Provide arguments.
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