Exam Advanced Statistical Physics: NS-370B

Date: 05-11-2013

Time : 13:30 - 16:30

The exam consists of 4 exercises, each worth 25 points.

This is a closed-book exam, i.e. notes and electronic devices are not allowed.

Please start every exercise on a new sheet of paper, with your name clearly written on every page.
Exam can be written in either English or Dutch. Please write clearly!

A few formulas and information that may or may not be useful in this exam:

The canonical partition function of a classical thermodynamic system of N ideuntical particles in
a volume V' a temperature T is written as

Z(NV,T) = 1/(NNY [ dT exp[-BH(T)], with Hamiltonian H(I') = YN p?/QerZj\;j dlri),
where p; is the momentum of particle 4, and r;; = jr; — r;] the distance between the positions of
particle 7 en j, and with ¢(r) the pair potential and 8~! = kgT.

The grand partition function of identical particles is
E(p, V. T) = Y v exp(BpN)Z(N,V,T), and the grand-canonical distribution is
fo(T,N) = exp[BuN — SH(T)]/INB*NZ(p, V, T)]. with g the chemical potential.

The second virial coefficient is Bo(T) = (1/2) [ dr[l — exp(—p8¢(r))] for pair potential ¢(r).
The two-body distribution function reads
. N(N -1 .
oy, ry) = W /dr;j cdryexpl—A®(ry, -, rn)] ()

with Qn(V,T) = [ dry - -dry exp[—B®(ry, -, ry)] the configurational integral.
kp =113 x1078J/K, e = 1.6 x 10719C, and R = 8.311/K/mol.
The OZ equation reads h(ri2) = e(ri2) + p [ drse(ris)h(rs2).
The binomial coeflicient (i.e. m choose n, which is the number of ways n object can be choosen
from m objects) is given by ((’n‘x%?‘)ﬂﬁ)
Stirling's approximation to order O(N) is given by log(N!) = Nlog N — N.
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The Taylor series of f{r) around v = a is given by f{x) = fla} + ~y(r —a) + wjygl(uc —a)? +
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f’TzT(ﬂ(I —a)

The following critical exponents for the Ising model:

— f is associated with the spontaneous magnetization.
— ¢« is associated with the specific heat when the external field is zero
— v i associated with the zero field susceptibility

~ 4 is associated with the magnetization at the criticel temperature

-(2(r] relates the electrostatic potential ¥:(r} to the charge
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density eQ(r) in a medium of relative dielectric constant ¢. 'T'he factor 4meg can be ignored in
Gaussian units, and must be retained in ST units.
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Consider a square lattice. On a square lattice, each lattice site has four nearest neighbours.
Assume that each lattice site can be in one of three different states, which we will label A, B and
C. Assume that the interaction between lattice sites is such that the contribution to the energy
is zero when nearest neighbour lattices are in different states, while it is —./ when they are in the
same state. The Hamiltonian for this system can be written

J ’
H= 7522 8o, (2)
i
where 4, ,, is the Kronecker delta function defined by

. 0 i gy # 0y .
OU“U" ‘—{ 1 if o =0 ’ (3)

. v . . . . . . .
5" indicates a sum over nearest neighbours, and o; indicates the state of the lattice site, ie. it
can be either A, B, or C.

Note that if there is a phase transition in this system it will be between a phase where the system
consists of an equal number of lattice sites in states A, B, and C, while in the ordered phase, one
of the three will be more likely. For simplicity, in this problemn we will assume that the ordered
state consists of more A lattice sites than either B or €. In this problem we want to use the
random mixing approximation {a form of mean field theory) to study the phase behaviour of this
system. Recall that within the random mixing approximation, the states of all lattice sites are
uncorrelated. Define ps to be the probablility that a particular lattice site is in state A, pp to be
the probablility a particular lattice site is in state B, and pe to be the probablility a particular
lattice site is in state . Note that in the disordered state, py = pp = pc.

(a) Argue why, in both the ordered and disordered phases,

1—pa
2

bp =Ppc =

(b} What is the expected potential energy in the system for a given value of p47

{c) What is the entropy for given value of pa?

(d) Show that, within the random tnixing approximation, the free energy of the system for a given
value of p4 can be written

BE

1 o 1-p
=4 (pi +500- PA)2> +palog(pa) + (1 pa)log ( - A) (4)

&

where A = 283J, and N is the number of lattice sites.

(e) In the disordered phase, p4 = 1/3. Define an order parameter m such that m = 2 (p4 — 1/3).
Note that is it 0 in the disordered phase and non-zero in the ordered phase. Rewrite the free
energy in terms of m. Show that the Landau expansion for the free energy can then be written

sr A 2 s m®  md
;.q::-—lor(S‘*—+(l~—A m? — —— + — + O0(m®). 5)
W S Al R (m?) (5)

(f) Using the Landau free energy, determine whether this system has a first or second order phase

transition, and determine the trausition temperature.

{a) A simulator is studying a new particle, a gyrobifastigium (see Figure 1). To study the system,
he performs simulations in the canonical ensemble. Quce the system stops changing (the
system equilibrates), he takes a picture of the sitnulation box. An image of what he observes
is shown in Figure 1. Can he determine from this picture if the phase transition between the
isotropic phase and crystal phase is first order or second order? And if he can, which one is
it? Explain.

{b) Consider a system with a Landau free energy given by

Fit.m) = ~hm + r{tym? + un®, (6)
with 7 a positive coustant and { = L3252 Approach the critical point (T¢) along the r-axis,
p T I i L) g
setting r{t) = r't. Find the critical exponents 3, v and 4.
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Figure 1. For question 2, part a)

{¢) Assume that we have a single-component system which can phase separate into two phases,
labeled o and v at sufficiently low temperature.
i} What are the conditions for equilibrium for this system?
—- i} A theorist develops an approximate theory to caleulate the free energy of the system. The
free energy she finds, is shown in Figure 2 for four different temperatures. Note that here she
has plotted F/V as a function of the density p = N/V. Use the four plots to sketch a phase
diagram of the systen.
iit) Explain why or show why we can ignore the contributions from the interface between
phases « and v when we are deriving the equilibrium conditions for coexistence between the
two phases.
iv) Write down the classical nucleation theory expression for the free energy barrier associated
with a spherical nucleus. Explain why it is essential to include contributions from the surface
to the free energy in this case.
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Figure 2: For question 2., part ¢).
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(a)

(b)

{d)

(e)

Calculate the grand partition function Z(pu, ug, V, T') and the grand potential Q{uq. 2, V, T)
of a classical two-component ideal-gas mixture of point particles of mass m; and my in a
volume V' at chemical potentials 2, and po at temperature T

Consider a family of N-particle Hamiltonians H\(T') = Hg(I') + A®(I"}) with switching pa-
rameter A € {0, 1], with T' the phase-space point of the N particles in a volume V. Denoting
the Helmholtz free energy of the system at temperature T  at a particular value of A by
Fy\(N,V.T), show that FI(N,V,T) = Fy(N,V, T} + fol dM\{®) with the brackets (---)y de-
noting the canonical ensemble average with Hamiltonian Hj.

Calculate the second virial coefficient By (T) of two-dimensional disks of hard-core diameter
o that interact with a square-well potential of depth —e < 0 for ¢ < r < 2o, with r the
center-to-center distance between two disks. Sketch the temperature dependence of By(1')
with appropriate units on the axes.

The structure factor of a homogeneous and isotropic bulk fluid of N identical particles is
defined by S(q) = (& Z;\;l Zjvzl exp(iq-ri;)). Show that S(q) = 1+p [ drexp(iq-r){g(r)—1)
for g £ 0 and p = N/V.

Sketch in a single graph the radial distribution function g{(r) of Brownian hard spheres with

a diameter of 100 nm at a packing fraction (i) 7 = 0.01 and (ii) n = 0.49. Label the curves
clearly, and give a scale to both axes of the plot.

4. Consider a solid electrode at potential ¥ with a homogeneous surface in the plane z = 0. The

(a)

(b)

(c)

(d)

(e)

electrode is in contact with a liquid electrolyte in the halfspace z > 0. The electrolyte is at
temperature T and has relative dielectric constant €, and it contains monovalent point ions of
charge te at a concentration cy = ¢_ = ¢ far from the electrode at z — oo. We wish to calculate
the electric potential y(z) and the ion concentrations ¢, (z) and ¢_(z) for z > 0, where we choose
Y(z — no) = 0. Note that the (average) energy of an ion of charge &e at position z equals tey(z).

Assume Boltzmann distributions for ¢y (2) and ¢_(z), and use this to derive the Poisson-
Boltzmann equation d?¢(z)/dz? = x? sinh ¢(z) for z > 0 for a properly defined dimensionless
electrostatic potential ¢(z) and screening parameter . Define x and give its dimension.

Impose appropriate boundary conditions and solve the PB equation of (a) within the weak-
potential limit where sinh ¢(z} =~ ¢(=z).

Calculate the surface charge density eo on the surface of the electrode, and estimate the order
of magnitude of x~! and o in the case of an electrolyte composed of water with ¢ = 107°M
at rooin temperature for ¥y = 10mV.

The excluded volume of a pair of hard needle-shaped colloidal particles with length L and diameter
D < L at a relative angle v is given by E{vy) = 2L?D|sinn|.

Calculate the (osmotic) pressure of an isotropic suspension of N of these needles in a volumne
V at temperature T

The needles show isotropic-nematic (I-N) phase coexistence at packing fractions ny = 0.004
and nn = 0.005. Estimate the aspect ratio L/ D} of the rods, and sketch a 'snapshot’ of about
10 rods in each of the two coexisting states, representing the rods by a line segment parallel
to their long axis.

END —




