Midterm Exam for Advanced Statistical Physics: NS-370B

Date: October 12th, 2021

Time for Regular Students: 15:15 - 18:15

Extra-Time Students Only: 15:15 - 18:45

This exam consists of 7 questions of varying length.

The total number of possible points is: 100.

This is a **closed-book** exam, no notes are allowed.

You will not require a calculator or any other electronic device and are consequently not permitted one.

Please start every exercise on a new PAGE of paper.

Write your name clearly on every four-page sheet of paper.

The exam can be written in either English or Dutch.

Please write clearly and using pen!

Equation Cheat Sheet

A few formulas and information that may or may not be useful in this exam:

• The canonical partition function of a classical thermodynamic system of N identical particles in a volume V a temperature T with Hamiltonian $H(\Gamma) - \Gamma$ is a point in phase space — is written:

$$Z(N,V,T)=rac{1}{N!h^{3N}}\int d\mathbf{\Gamma} \exp[-eta H(\mathbf{\Gamma})], ext{ where } eta^{-1}=k_{\mathrm{B}}T.$$

• The grand partition function of identical particles is given by:

$$\Xi(\mu, V, T) = \sum_{N=0}^{\infty} \exp(\beta \mu N) Z(N, V, T),$$

and the grand-canonical distribution is given by:

$$f_g(\mathbf{\Gamma}, N) = \frac{\exp[\beta \mu N - \beta H(\mathbf{\Gamma})]}{[N!h^{3N}\Xi(\mu, V, T)]}$$
, with μ the chemical potential.

• The second virial coefficient B_2 for an isotropic pair potential $\phi(r)$ is given by:

$$B_2 = -\frac{1}{2} \int_V d\mathbf{r} \, \left(\exp(-\beta \phi(r)) - 1 \right).$$

- $k_{\rm B} = 1.13 \times 10^{-23} {\rm J/K}, \, c = 1.6 \times 10^{-19} {\rm C}, \, {\rm and} \, \, R = 8.31 {\rm J/K/mol}.$
- The binomial coefficient (i.e., m choose n), which is the number of ways n objects can be chosen from m objects, is given by:

$$\binom{m}{n} = \frac{m!}{(m-n)!n!}.$$

- Stirling's approximation to order O(N) is given by: $\log(N!) = N \log N N$.
- Gaussian Integral:

$$\int_{-\infty}^{\infty} dx \ e^{-x^2} = \sqrt{\pi}.$$

• The Taylor series of f(x) around x = a is given by:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

• From the Taylor series we obtain:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

and

$$\log(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}.$$

1. Entropy: (6 points)

Determine the Legendre transform of the entropy which is a natural function of 1/T, V, N. Start from the definitions of the first and second law <u>and</u> write these down. Show that your transformation works.

2. Spins: (16 points)

Consider a system of N distinguishable, non-interacting spins, in an external magnetic field denoted H>0. Assume that each spin carries a magnetic moment μ , which points either parallel or anti-parallel to the applied field. The energy of a specific state can then be expressed as

$$-\sum_{i=1}^{N} n_i \mu H; \quad n_i = \pm 1, \tag{1}$$

where $n_i\mu$ is the magnetic moment in field direction.

- (a) What do the microstates of this system look like? Draw a few.
- (b) What is the internal energy of this system as a function of $\beta = 1/k_BT$, H, and N (use the ensemble characterized by these variables).
- (c) Determine the entropy of this system as a function of β , H, and N.
- (d) Determine the behavior of the energy and entropy for this system as $T \to \infty$.

3. Percolation: (10 points)

Consider a square lattice. Assume that a 2×2 subset in this lattice 'spans' if there is an edge-connected cluster that goes from the top to the bottom of the square. Show that $R(p) = 2p^2(1-p)^2 + 4p^3(1-p) + p^4$ and support your argumentation toward this result using sketches. Determine the analytic expression for the corresponding non-trivial fixed point.

4. Equipartition: (16 points)

Show that a Hamiltonian of the form

$$\mathcal{H} = \sum_{i=1}^{M} a_i s_i^2 \tag{2}$$

with $a_i > 0$ some constant and s_i a generalized coordinate of the system leads to

$$\langle \mathcal{H} \rangle = \frac{1}{2} k_{\rm B} T M.$$
 (3)

Use what you have proven above to determine the internal energy per particle for:

- (a) An ideal gas in 5 dimensions
- (b) A diatomic gas with rigid bond in 3D
- (c) A diatomic gas with flexible bond in the direction of the molecule's symmetry axis in 3D
- (d) A gas of rigid L shapes in 3D

Justify your answer for each point (a-d) in a few words (no long-winded stories please).

The exam continues on the next page =>

5. Ising with more Neighbors: (20 points)

The one-dimensional, zero-field Ising model with nearest and next-nearest neighbor interactions can be written as

$$\mathcal{H} = -J_{nn} \sum_{i=1}^{N-1} S_i S_{i+1} - J_{nnn} \sum_{i=1}^{N-2} S_i S_{i+2}. \tag{4}$$

The partition function for this system can be shown to be

$$\frac{1}{N}\log Z \propto \log \left[e^{\beta J_{nnn}} \cosh(\beta J_{nn}) + \left\{ e^{-2\beta J_{nnn}} + e^{2\beta J_{nnn}} \sinh^2(\beta J_{nn}) \right\}^{1/2} \right]. \tag{5}$$

- (a) Write down the free energy per particle.
- (b) Show that

$$\langle S_i S_{i+1} \rangle = \frac{\sinh(\beta J_{nn})}{\left[\exp(-4\beta J_{nnn}) + \sinh^2(\beta J_{nn})\right]^{1/2}}.$$
 (6)

Via the same procedure, you can show that $\langle S_i S_{i+2} \rangle =$

$$1 - \frac{2\exp(-4\beta J_{nnn})}{\left[\exp(-4\beta J_{nnn}) + \sinh^2(\beta J_{nn})\right]^{1/2} \left[\cosh(\beta J_{nn}) + \left(\exp(-4\beta J_{nnn}) + \sinh^2(\beta J_{nn})\right)^{1/2}\right]}.$$
 (7)

(c) Using these answers compute $\langle S_i S_{i+1} \rangle$ and $\langle S_i S_{i+2} \rangle$ in the limit as $J_{nnn} \to 0$ and explain your result in a few words.

6. Landau Free Energy: (20 points)

Let us assume that we have a system for which the Landau free energy is given by

$$f(T,m) \approx b'(T-T_0)m^2 - cm^3 + dm^4.$$
 (8)

where b' > 0, c > 0, and d > 0 are constants and T_0 is a temperature.

- (a) What happens as $T < T_0$? Explain this using a few words in terms of the disordered phase.
- (b) What kind of phase transition does this system exhibit? Explain your answer with two sketches. One should show free-energy curves as a function of m for several (relevant) temperatures. The other should show how this leads to variation of the minima as a function of temperature. Label the curves by temperature where appropriate and indicate the stable minima clearly. Finally, properly label your axes.
- (c) Compute the temperature at which the phase transition occurs and express the result in terms of b', c, and/or d.

7. Fluctuations: (12 points)

Show that at fixed V and N within the canonical ensemble, the constant-volume heat capacity

$$C_V = \left(\frac{\partial U}{\partial T}\right)_{N,V} \tag{9}$$

can be written as

$$\frac{\langle \epsilon_s^2 \rangle - \langle \epsilon_s \rangle^2}{k_B T^2},\tag{10}$$

where ϵ_s is the energy associated with a microstate 's' and the brackets denote averages. Hint: you have to make several steps to get to the final answer, start by defining U in the ensemble.

The exam ends here!