
Midterm Exam for Advanced Statistical Physics: NS-370B

Date: October 10th, 2023

Time for Regular Students: 13:30 - 16:30

Extra-Time Students Only: 13:30 – 17:00

This exam consists of 4 questions of varying length.

The total number of possible points is: 100.

This is a closed-book exam, no notes are allowed.

You will not require a calculator or any other electronic device and are consequently not permitted one.

Please start every exercise on a new PAGE of paper.

Write your name clearly on every four-page sheet of paper.

Please number your sheets (1/3, 2/3, ...) and indicate which questions are on it.

The exam can be written in English or Dutch.

Please write CLEARLY and using PEN!
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Equation Cheat Sheet

A few formulas and information that may be useful for this exam:

• The canonical partition function of a classical thermodynamic system of N identical particles in
a volume V a temperature T with Hamiltonian H(Γ) — Γ is a point in phase space — is written:

Z(N,V, T ) =
1

N !h3N

∫
dΓ exp[−βH(Γ)], where β−1 = kBT .

• The grand partition function of identical particles is given by (pay attention to the N dependence
of Z for each term in the sum):

Ξ(µ, V, T ) =
∑∞

N=0 exp(βµN)Z(N,V, T ),

and the grand-canonical distribution is given by:

fg(Γ, N) =
exp[βµN − βH(Γ)]

N !h3NΞ(µ, V, T )
, with µ the chemical potential.

• The second virial coefficient B2 for an isotropic pair potential ϕ(r) is given by:

B2 = −1

2

∫
V

dr (exp(−βϕ(r))− 1) .

• kB = 1.13× 10−23 J/K, e = 1.6× 10−19 C, and R = 8.31 J/K/mol.

• The binomial coefficient (i.e., m choose n), which is the number of ways n objects can be chosen
from m objects, is given by:(
m

n

)
=

m!

(m− n)!n!
.

• Stirling’s approximation to order O(N) is given by: log(N !) = N logN −N .

• Gaussian Integral:∫ ∞

−∞
dx e−x2

=
√
π.

• The Taylor series of f(x) around x = a is given by:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · .

• From the Taylor series we obtain:

ex =

∞∑
n=0

xn

n!
& log(1− x) = −

∞∑
n=1

xn

n
.

• Maxwell-Boltzmann (s = 0), Bose-Einstein (s = −1), and Fermi-Dirac (s = 1) statistics are:

f(ϵ) =
1

exp[β(ϵ− µ)] + s
,

where ϵ is the energy (of a single-particle level) and µ the chemical potential.

• The quantum single-level ‘grand’-canonical partition functions Zi are given by:

Zi =
∑M

ni=0 exp(βni(µ− ϵi)),

where ϵi is the energy associated with the i-th level and µ is the chemical potential. The value
of M depends on the statistics; M = 1 for fermions and M = ∞ for bosons. These lead to the
following grand canonical partition function

Ξ(µ, V, T ) =
∏

i Zi,

for the system, where i runs over all available levels.
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1. Thermodynamics: (37 points)

In this question, we consider several useful thermodynamic relations, identities, and transformations.

(a) Write down the mathematical expressions for the first and second law of thermodynamics. Write
down what the symbols mean and explain the sign convention that you picked in a few words.

(b) Provide the two standard forms of work. Ensure agreement with your choice in part (a).

(c) Combine the laws and choices of work to obtain dU = TdS− pdV +µdN . Explain in a few words
when it is not allowed to use this expression.

(d) Derive expressions for T , p, and µ in terms of U(S, V,N) based on your result from (c).

(e) Make the transition to the µV T ensemble and provide an expression for dΩ. Provide the trans-
formation and the intermediate steps.

(f) Show that Ω(µ, V, T ) = −p(µ, T )V and explain what the implication is for the intensive variables
in general using only a few words.

We also know that βΩ(µ, V, T ) = − log(Ξ(µ, V, T )) and will for assume that the system behaves classi-
cally for the remainder of the exercise. Using the definition of Ξ(µ, V, T ) it can be shown that

⟨N2⟩ − ⟨N⟩2

⟨N⟩
= kBT

(
∂ρ

∂p

)
T

. (1)

(g) Explain in a few words: How would Eq. (1) behave when the system is unstable, does this make
sense based on your understanding of variance?

Now assume we are working with an ideal gas (the net potential energy is zero) and define the fugacity
to be z(µ, T ) = eβµ with β = 1/(kBT ) and kB Boltzmann’s constant.

(h) Use the definition of the canonical partition function to derive an expression for the thermal
wavelength Λ.

(i) Show that Ξ(z, V ) = exp(zQ1), where Q1 = V/Λ3 (for the ideal gas).

2. Interpreting Equipartition: (19 points)

The eigenstates of a 1D harmonic oscillator, denoted by the quantum number n = 0, 1, 2, · · ·, have
energies ϵn = h̄ω(n + 1/2). Here, ω is the frequency and h = 2πh̄ Planck’s constant. At temperature
T , the quantum-mechanical canonical partition function is defined by Zq(T ) =

∑∞
n=0 exp[−βϵn], with

β = 1/(kBT ) and kB Boltzmann’s constant.

(a) Show that Zq(T ) = (2 sinh(βh̄ω/2))−1.

(b) Compute the high-temperature limit T ≫ h̄ω/kB of Zq(T ).

The same oscillator is classically described by a Hamiltonian of the form H(x, px) = p2x/(2m)+mω2x2/2,
with m the mass, px the momentum in the x-direction, and x the amplitude of the oscillator. The
classical partition function is given by

Zc(T ) =
1

Y

∫ ∞

−∞
dpx

∫ ∞

−∞
dx exp[−βH(x, p)], (2)

with 1/Y a prefactor that we will determine by imposing Zc(T ) to be equal to the high-temperature
limit of Zq(T ), i.e., where we expect the classical behavior should be recovered.

(c) Compute Zc(T ) and show that matching the quantum result to the classical one leads to Y = h.

Next we consider a nitrogen gas.

(d) What is the internal energy U according to the equipartition theorem for temperatures much
smaller than those needed to ionize the molecule and what is it for temperatures close to ionization?
Explain your results in a few words, referencing properties of the (quantum) harmonic oscillator.

The exam continues on the next page ⇒
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3. Gibbs and Boltzmann Entropy: (23 points)

The Gibbs definition of entropy S states that

S = −kB
∑
s

ps log ps, (3)

where the sum is over all states s. The probability of being in that state is ps and kB is Boltzmann’s
constant.

(a) Show that the Gibbs definition reduces to that of Boltzmann in the microcanonical ensemble.

(b) Show that in the canonical ensemble, the Gibbs definition of entropy gives rise to F = U − TS
where F is the Helmholtz free energy, U the internal energy, and T the temperature.

(c) Show that the Gibbs definition leads to an extensive entropy.

(d) Use the fact that
∑

s ps = 1 as a constraint to maximize Eq. (3). Show that you recover the form
of the fundamental assumption underlying statistical mechanics, when there are Ω states in total.

(e) Explain in a few words why this is reasonable, given that you only have information on the
normalization of the probability.

4. Bosons and the Density of States: (21 points)

Consider the density of states (DoS) for a particle with mass m in a d-dimensional system with size L
that is free to move within its confining volume. The permissible energy levels for the particle are then

En =
h̄2

2m
k2 =

π2h̄2

2mL2
(n · n), (4)

where n is the vector containing the quantum numbers ni, with i ∈ {x, y, z, . . .} depending on the
dimension and k = |k| with ki = πni/L.

(a) Show that the DoS is given by

g(E) =
1

2
Ωd

(
L

2π

)d (
2m

h̄2

)d/2

E
d
2−1 (5)

where Ωd represents the surface are of the d-dimensional unit sphere: Ω1 = 2, Ω2 = 2π, Ω3 =
4π, etc. Hint: Do not obtain a general expression for Ωd.

(b) Sketch the behavior of the three cases (one-, two-, and three-dimensional).

Using the DoS and Bose-Einstein statistics it can be shown that in three dimensions the density of the
system can be written as

ρ =
1

Λ3

∞∑
m=1

zm

m3/2
+

1

V

z

1− z
, (6)

where z = eβµ is the fugacity in terms of the inverse thermal energy β = 1/(kBT ) with T the temperature
and kB Boltzmann’s constant; Λ is the thermal wavelength. We also know

∑∞
m=1 m

−3/2 = ζ(3/2) ≈ 2.61.

(c) What does z tend to in the low-temperature limit? Justify your answer with a few words. Hint:
If you do not know Λ use that Λ ∝ T−1/2.

(d) Use the expression in Eq. (6) to arrive at a(n approximate) result for the critical temperature, at
which bosons would undergo condensation in three dimensions. Hint: You should find Tc ∝ ρ2/3.

lose to the transition, the sum in the expression for the density may be approximated as
∑∞

m=1(z
m)/(m3/2) ≈

ζ(3/2) + 2
√
π
√
1− z + · · ·. This allows one to write z as a function of T and Tc as

z ≈ 1− ζ(3/2)2

4π

[(
T

Tc

)3/2

− 1

]2

. (7)

(e) What do you conclude (in a few words) about the order of the Bose-Einstein transition, referencing
the properies of phase transitions in general?

The exam ends here ,!
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