
Final Exam for Advanced Statistical Physics: NS-370B

Date: November 4th, 2024

Time for Regular Students: 17:00 - 20:00

Extra-Time Students Only: 17:00 – 20:30

This exam consists of 7 questions of varying length.

The total number of possible points is: 100 + 10 bonus points.

This is a closed-book exam, no notes are allowed.

You will not require a calculator or any other electronic device and are consequently not permitted one.

Please start every exercise on a new PAGE of paper.

Write your name clearly on every four-page sheet of paper.

Please number your sheets (1/3, 2/3, ...) and indicate which questions are on it.

The exam can be written in English or Dutch.

Please write CLEARLY and using PEN!
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Equation Cheat Sheet

A few formulas and information that may be useful for this exam:

• The canonical partition function of a classical thermodynamic system of N identical particles in
a volume V a temperature T with Hamiltonian H(Γ) — Γ is a point in phase space — is written:

Z(N,V, T ) =
1

N !h3N

∫
dΓ exp[−βH(Γ)], where β−1 = kBT .

• The grand partition function of identical particles is given by (pay attention to the N dependence
of Z for each term in the sum):

Ξ(µ, V, T ) =
∑∞

N=0 exp(βµN)Z(N,V, T ),

and the grand-canonical distribution is given by:

fg(Γ, N) =
exp[βµN − βH(Γ)]

N !h3NΞ(µ, V, T )
, with µ the chemical potential.

• The second virial coefficient B2 for an isotropic pair potential ϕ(r) is given by:

B2 = −1

2

∫
V

dr (exp(−βϕ(r))− 1) .

• kB = 1.38× 10−23 J/K, e = 1.6× 10−19 C, and h = 6.63× 10−34 Js.

• The binomial coefficient (i.e., m choose n), which is the number of ways n objects can be chosen
from m objects, is given by:(
m

n

)
=

m!

(m− n)!n!
.

• Stirling’s approximation to order O(N) is given by: log(N !) = N logN −N .

• Gaussian Integral:∫ ∞

−∞
dx e−x2

=
√
π.

• The Taylor series of f(x) around x = a is given by:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · .

• From the Taylor series we obtain:

ex =

∞∑
n=0

xn

n!
& log(1− x) = −

∞∑
n=1

xn

n
.

• Maxwell-Boltzmann (s = 0), Bose-Einstein (s = −1), and Fermi-Dirac (s = 1) statistics are:

f(ϵ) =
1

exp[β(ϵ− µ)] + s
,

where ϵ is the energy (of a single-particle level) and µ the chemical potential.

• The quantum single-level ‘grand’-canonical partition functions Zi are given by:

Zi =
∑M

ni=0 exp(βni(µ− ϵi)),

where ϵi is the energy associated with the i-th level and µ is the chemical potential. The value
of M depends on the statistics; M = 1 for fermions and M = ∞ for bosons. These lead to the
following grand canonical partition function

Ξ(µ, V, T ) =
∏

i Zi,

for the system, where i runs over all available levels.
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1. Thermodynamics: (12 points)

In this question, we consider several useful thermodynamic relations, identities, and transformations.

(a) Write down the mathematical expressions for the first and second law of thermodynamics. Write
down what the symbols mean and explain the sign convention that you picked in a few words.

The laws can be combined with the standard choices of work to obtain dU = TdS − pdV + µdN .

(b) Make the transition to the (admittedly slightly useless) Spµ ensemble by deriving dJ = TdS +
V dp−Ndµ. Provide the transformation, name it, and give the intermediate steps.

(c) Derive expressions for T , V , and N in terms of J(S, p, µ) based on your result from (b).

(d) Show that J(S, p, µ) = T (µ, p)S and explain how you arrived at this result in few words.

(e) Use your expression in (d) to derive the Gibbs-Duhem relation.

2. Critical Exponents: (14 points)

Consider a system with a Landau free energy given by f(t,m) = −hm + r(t)m2 + um6, with u > 0 a
constant and t = (T−Tc)/Tc, where Tc is the finite critical temperature. The critical point is approached
along the r-axis by setting r(t) = r′t.

(a) Sketch the behavior of f(t,m) just above and just below the critical temperature. Assume that
h > 0, but is not the dominant term.

(b) Set h = 0 and determine the possible phases. Explain in a few words, optionally supported by a
sketch, what the order of the phase transition is.

(c) On either side of the transition, determine the critical exponent β of the ‘spontaneous magnetiza-
tion’, i.e., m ∝ |t|β . Hint: is there a power law on either side?

(d) Establish the critical exponent γ, which is defined as χ ≡ limh↓0
(
∂m
∂h

)
∝ |t|−γ , on either side of

the transition.

3. Site Occupation: (15 points)

A scientist considers site occupation on a square (2D) lattice. Let the probability of an occupied site be
p, then the probability to find an unoccupied site is 1− p.

(a) Use a renormalization-group argument with 2×2 superblocks that are occupied when at least half
of the squares are occupied. Show (using sketches) that R(p) = p4 +4p3(1− p) + 6p2(1− p)2 and
provide the analytic (fully reduced) expression for the associated critical value of p.

The occupation model is now complemented with an interaction H = −J
2

∑
i

∑
j
′
δσi,σj

, where
∑′

j

indicates a sum over nearest neighbors; σi represents the state of site i, and can be either U(noccupied)
or O(ccupied); and δσi,σj is the Kronecker delta function: δσi,σj = 0 if σi ̸= σj and δσi,σj = 1 if
σi = σj . To gain additional understanding of the system, the researcher makes the random-mixing
approximation. This implies that there are no correlations between neighboring sites.

(b) Determine the average energy and the entropy under the random-mixing approximation. Explain
your reasoning using only a few words! Hint: have a look at the expression in (c) if you get stuck.

(c) Show that the Helmholz free energy under this approximation may be written as

f ≡ βF

N
= −2βJ

(
p2 + (1− p)2

)
+ p log(p) + (1− p) log (1− p), (1)

where β = 1/(kBT ) with T the temperature and kB the Boltzmann constant, and N is the number
of lattice sites.

(d) Argue that the above reduced free energy per site f is minimized by p = 1/2.

The exam continues on the next page ⇒
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4. Fermion Ideal Gas: (26 points)

At high temperatures T , a gas of fermions in a 3D volume V behaves similar to a classical ideal gas.
In this problem, the goal is to determine the leading-order corrections to the classical ideal gas law
pV = NkBT , where p is the pressure, N the particle number, and kB is the Boltzmann constant. We
start from the grand-canonical partition function Ξ(µ, V, T ) =

∏
i Zi with Zi =

∑
ni

exp(βni(µ − ϵi)),
where µ is the chemical potential and ϵi the energy of the i-th quantum level of a single particle.

(a) Use a general relation between ⟨N⟩ and Ξ to show that the particle number N is given by the
integral representation

N =

∫
dE g(E)fFD(E), (2)

where g(E) is the density of states and fFD(E) adheres to Fermi-Dirac statistics. Support your
calculation by a few words of explanation.

(b) Use the definition of the wave vector k = πn/L, with n the vector containing the quantum
numbers nx, ny, and nz, and the expression for the energy En = (h̄2k2)/(2m), with m the particle
mass, k = |k|, and h̄ = h/(2π) the reduced Planck constant, to arrive at the density of states

g(E) =
L3

4π2

(
2m

h̄2

)3/2 √
E. (3)

We will identify L3 = V for the remainder of this exercise.

(c) Input both g(E) and fFD(E) into the expression for N and rework it using a substitution to arrive
at the following scaling of the particle density ρ = N/V with the thermal wavelength Λ

ρ =
1

Λ3

2√
π

∫
dx

√
x

z−1ex + 1
, (4)

with z = exp(βµ). Hint: you can find the expression for fFD(E) on the cheat sheet (h̄ = h/(2π)).

(d) Explain using a few words when quantum effects appear. Use Λ and ρ in your argument.

(e) Argue using only a few words and the above expression for N that at high temperatures T the
chemical potential µ becomes large but negative, such that z = eβµ ≪ 1. Hint: in your answer
you should reference ensemble in which βp = ρ holds and make use of ρ ∝ z/Λ3.

(f) Turning to a classical ideal gas, use equipartition to show that the pressure satisfies pV = 2E/3
with E the energy. Explain your answer in a few words.

5. Needle-like Objects: (15 points)

Here, we examine the phase behavior of hard anisotropic particles (long rods) using Onsager theory in
three dimensions (3D).

(a) What are the isotropic and nematic phase for a (colloidal) liquid crystal? Illustrate using sketches
and explain using a few words only. Hint: your sketches can be in 2D!

(b) Provide an approximate expression for the second virial coefficient B2(ω̂1, ω̂2) for thin, long rods
of length L and diameter D, i.e., D ≪ L. Explain your expression using a few words and support
your argument using a sketch. N.B. You need to approximate the integral! Hint: an expression
for B2 can be found on the equation cheat sheet. Your extension to hard rods should depend on
the respective orientation of the rods (ω̂1 and ω̂2), which are unit vectors, and L and D only.

The nematic director is the average orientation of the rods in the liquid crystal. Let θ measure the angle
between a rod-like colloid and this director. It is then appropriate to write the order parameter as a
series in terms of cos θ, which takes values in the range [−1, 1].

(c) Show that S =
〈
(1/2)

(
3 cos2 θ − 1

)〉
is a suitable order parameter for identifying the disordered

phase. Hint: what is the probability of finding any given orientation in the disordered phase?

The exam continues on the next page ⇒
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6. Chemical Reactions: (18 points)

Consider a square-lattice model with A sites and n occupied sites (or particles). If two particles are
adjacent, they bond with bonding energy −ϵ (with ϵ > 0). However, a particle that is already bonded
cannot bond with any other particles. Thus, the system consists of monomers and dimers. Here, we
develop an approximate theory that gives us the ratio. Let the average monomer density be ρ1 = n1/A
and let the dimer density be ρ2 = n2/A, with n1,2 the number of monomers and dimers, respectively.
Assume that the monomers and dimers do not interact, so both behave like an ideal gas.

(a) Show that the canonical partition sum can be written as Q1(n1, A, T ) = An1/(n1!) for the
monomers, and as Q2(n2, A, T ) =

(
2eβϵA

)n2
/(n2!) for the dimers; β = 1/(kBT ) with kB the

Boltzmann constant and T the temperature. Support your result using a few words.

(b) Show that the reduced Helmholtz free energy is given by:

βF (ρ1, ρ2, A, T )/A = ρ1 (log ρ1 − 1) + ρ2 (log ρ2 − 1− log 2− βϵ) , (5)

in the thermodynamic limit. Explain the approximation(s) you use in a few words.

(c) Show that in equilibrium the chemical potentials of monomers and dimers should obey: 2µ1 = µ2.
Hint: use that n1 + 2n2 = n = constant.

(d) Use the answer from (c) to show that this requires:

ρ2
ρ21

= 2 exp(βϵ). (6)

(e) What happens in the limit where ϵ → 0 (assuming low density)? And ϵ → ∞? Provide your
expectation based on physical intuition using only a few words. Hint: you can compute this, but
it is unnecessary and rather lengthy!

7. Heat Capacity of a Metal: (10 bonus points)

We now consider the fermion ideal gas in 3D at very low temperatures and examine its properties.

(a) Sketch the limiting T ↓ 0 behavior of fFD(E) as a function of E, labelling your axes and indicating
the Fermi energy EF. State in a few words only what this implies about the occupation of the
energy levels below EF for temperatures slightly above zero.

(b) Provide a physical argument, for which you invoke equipartition, as to why the heat capacity per
volume caused by the electrons scales linear with T . Use a few words to support your argument.

A more careful analysis of the temperature dependence reveals that in a metal, the heat capacity scales
as T 3 for slightly higher temperatures and tends to a constant at even higher temperatures.

(c) Based on your physical intuition, what is the constant that the heat capacity tends toward?
Provide the scaling / an expression and explain your result using only a few words.

The exam ends here ,!
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