FINAL EXAM TURBULENCE IN FLUIDS 2021/22
11 April 2022, 8.45 - 10.45 (2 hours)
Two problems (giving a total of 45 points)
Remark 1: Before you start, please read the problems carefully. For each problem you are
expected to work for about | hour.
Remark 2: Please write your name and student number on every piece of paper.
Remark 3: Answers may be written in English or Dutch.

Remark 4: In Problem 2 you have to use your laptop. Please send your solutions of problem
2 as one single PDF-file by email to |A.J.vanDelden@uu.nl| before 11:00h on 11 April 2022.
Don’t forget to include your name in the document.







Problem 1: Self similar turbulent flows (total 21 points)

A class of free shear flows can be assumed to be statistically stationary and statistically two-
dimensional. In this case, the mean flow is described by the so-called boundary layer equations
consisting of the mean continuity equation and one mean momentum equation and depending
on only two spatial coordinates.

In this problem we consider the ideal plane wake behind a cylinder (see Figure [1] below),
which is similar to the free shear flows treated in class. There is a uniform stream of strength
/. in the z-direction, the cross-stream coordinate is y, and statistics are independent of the
spanwise coordinate z (the cylinder is aligned with z). There is statistical symmetry about the
plane y = 0. The continuity and boundary layer equation are given by
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This flow can be characterised by two velocity scales, the mean flow U, and the characteristic
velocity difference U (x) = U, — (U{.r. 0.0)}). A characteristic length scale 4(.t) is defined by
(U(r.£6.0)) = U, — LU, (x).
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Figure !: Sketch of the plane wake behind a cylinder aligned with the z-direction, with the
characteristic velocity scales {/, and {/,{.r) and length scale §(x).

(a) Explain the meaning of {',{.r) and 0{.r}. The wake spreads and decays as .r increases.
What does that qualitatively mean for ¢(.¢} and U,(.r)/U.? (3P)

We now assume thalt the self-similarity profile for the streamwise velocity is given by a function
f(€) (where & = y/d{x)), which is called the velocity defect, f(€) = (U.—(U{x.y.0)))/U ().
Similarly, the Reynolds stresses are self similar with function g(£), such that (uv) = U,()*g(€).
In the following problems, the aim is to show that these self-similarity profiles together with
the boundary layer equations imply that the wake spreads as '/ and the velocity difference
decays as r~ /2.

(b) Show that for the plane wake, the boundary layer equation can be written as
a d d
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Exptain what has been neglected and why. (3P)
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(c) Show that the boundary layer equation {3) implies that the momentum deficit flow rate
Al defined by

Al = / +m[p(U)(U,. —{(U)}dy (4)
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is independent of z. (3P)

(d) Write the deficit momentum flow rate A in terms of the self similarity variables f(£)
and g(£) and argue why this implies that the product U,(x}d(x) is also independent of
x. (3P)

(e) In the far wake, the boundary layer equation can be approximated by
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which leads in terms of the self similarity variables f(£) and g(£) to

S(f) = ~¢, (6)

where the spreading rate 5 is defined by S = %fj—i. Explain why Eq. @ implies that §
is constant (independent of ). (3P)

(f) Finally use the results of item (d) and (e) to show that U,(z) ~ 1 '/* and é(x) ~ z'/2,
Assume that all integration constants vanish in the self-similar region. (3P)

(g) The boundary layer equation (5) in the wake still exhibits a closure problem. Explain
how this problem can be overcome by a turbulent viscosity hypothesis. In particular, in
the self similar region, show that the turbulent viscosity hypothesis amounts to

g ,}'.f f’1 (7)

and that the turbulent viscosity in the self-similar regions should be independent of .
You can use the integrated version of the relation (@), i.e. S€f = —g. (3P)

Problem 2: Convection model (total 24 points)

Problem 2: see next page



Exam Turbulence in Fluids, part 2, 11 April 2022 (1 hour)
{open book; laptop computer required)

We are going to study numerical solutions of the twelve-component spectral model of poloidal
convection. This is a truncated (low-order) model of poloidal thermal convection between two horizontal
perfectly conducting and stress-free horizontal boundaries held at different temperatures. The model-
equations that govern the time-evolution of the Fourier coefficients of the vertical velocity and
temperature corresponding to the Fourier modes (waves), which are taken inside the truncation, are (see
section 36 of the lecture notes),
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The twelve-compoenent model has “multiple equilibria™, i.¢. several sieady state solutions for the same
values of the externally imposed parameters, Ra, Pr and «. These solutions represent hexagonal
convection cells with either upward motion (up-hexagons) or downward motion (down-hexagons) in the
centre of the cell, or steady two-dimensional convection cells aligned along the x-axis (rolls),

The model equations are integrated in time with the fourth order accurate Runge-Kutia scheme to
approximate the time-derivative. A set of 1000 integrations. lasting 23 time units, is performed (or
randomly differing initial conditions. The initial condition consists of adding a random number between
10 and +10 (negative or positive!) to the initial values (=zero) of the amplitudes, W,,, and W, , using the
Nrmpy random number generator. All the other ten amplitudes are zero initially .

For Pr=10, Ra=35000 and a=1/(2V2) the model finds a steady state solution within the prescribed length
of time of the run (25 time units). The set of 1000 solutions consists of a collection of the following three
basic steady solutions: rolls (W,..,=6.99), down hexagons (W,,,=3.86) and up-hexagons (W,;,=-1.86),
where rolls are slightly more probable than up-hexagons or down-hexagons.

The scatter plot in figure 1 shows the final state of the 1000 model integrations. The right panel is a
close-up of the left pancl. The black circle with a coloured cross represcnts a steady state. in wrms of W,
and W, where a red cross corresponds to a down hexagon, a blue cross corresponds Lo an up-hexagon
and a green cross corresponds to rolls aligned atong the y-axis. The steady state of rest (W, =W,,,=0) is
not indicated explicitly because it is linearly unstable at Ra=5000 and a=1/ 242). The red dots represent
the initial values of W,,, and W, of runs having a down-hexagon as final steady state (at r=25). The blue
dots represent the initial values of W, and W, of runs having an up-hexagon as final stable steady
stale. The green dots represent the initial values of W and W, of runs having a roll convection
pattern as final stable steady state.

The 1000 integrations lead to rolls in 388 cases, an up-hexagon in 303 cases and a down-hexagon in
307 cases. The fixed points associated with steady state hexagons lie very close 1o the edge of their
respective basins of attraction, bordering the basins of attraction of rolls.
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Figure 1. Left panel: basins of attraction of rolls (green), down-hexagons (red) and up-hexagens (blue)
(see the text for further explanation) in the W, ,-W,,,, plane with all other coefficients equal 1o zero
initially. The right panel is a close-up of the left panel, showing in addition the initial stare of an extra
pair of integrations starting at, respectively, (W ,,, W, )=(-2.75, 3.86) (the red plus) and (W,,,, W..))
=(-2.74, 3.86) (the green cross). All other amplitudes are zero initially. The final state in the first case is
(W, W.:)=(-3.86, 3.86) (a down-hexagon) and in the second case the final state is (W,,,, W, )=(0,
6.99) (a roll).

To answer the eight questions below )_uu will need the Pylhon-scripl of the lwelve-cdhporienl model (eq.
set 163) (the file, PoloidalConvectionModel[vrsl | .py, On Blackboard (Lecture 10)).

(a) Perform the additional pair of model-integrations, or runs, which are referred to in the caption of
figure 1. The runs shoutd last at least 1.5 non-dimensional time units. Plot W, and W,,, as a function of
time for both runs. Shonly discuss the result (qualitatively).

{b) Show that the roll solution, indicated by the green cross & black cirele in the right panel of figure 1,
with (W, W...)=(0, 6.99), is also a solution of the Lorenz model {eqs. 87-89 in the lecture notes) for
a=12.

{¢) Piot a measure of the separation “distance” in twelve-dimensional phase space between the two time.
dependent solutions, determined in part (a}, as a function of time.

(d) Does this separation “distance” behave in accord with Lyapunov's hypotheses (see section17 of the
lecture notes)? Explain why. Determine the associated Lyapunov exponent, if possible.

! (e) When Ra=5000, the fluid layer gains heat by conduction through the lower solid boundary and looses
| heat by conduction through the upper solid boundary. Heat is transferred vertically through the fluid both
by molecular conduction and by convection. Demonstrate that steady state two-dimensional convection
cells (rolls) are more efficient at transferring heat upwards than steady state down-hexagons at Pr=10,

Ra=5000 and a=1/(2v2), according to the 12-component model (egs. 163).

: (n Do you get a strange attractor, similar to Lorenz’s “butterfly” (ll ure 10 of the lecture DOICS_}, when
iy o & Y 4
ou repeal the pﬂil’ of model-integrations of part (a) for Ra-ZSRa,-IS-HO (inslead of Ra-—SOOOi"‘
Y

(g) Plor a measure of the separation “distance” in twelve-dimensional phase space between the pair of
lime-dependent solutions in this case, as in parl (c).

(h) Is the solution more sensitive to initial conditions at Ra=18410 than at Ra=5000? If so, why?




