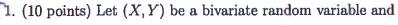
Applied Statistics - Spring 2015 Final Exam

June 1st, 2015

INSTRUCTIONS:

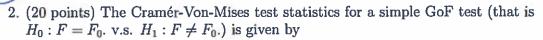
- You can bring slides, lecture notes and exercises/solutions used in the course.
 Other materials are NOT allowed.
- You can use a calculator. Other electronic devices are NOT allowed.
- The exam consists of 6 exercises.
- Time: 3 hours.
- Indicate your name, student number and the university on EACH answer sheet.
- Answers should be explained and clearly formulated. You should clearly and concisely indicate your reasoning and show all relevant work.



$$F(x,y) = \mathbb{P}(X \le x, Y \le y).$$

Based on a random sample $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ from F,

- (a) find an estimator of $F(x_0, y_0)$, for a given (x_0, y_0) ;
- (b) derive an asymptotic $100(1-\alpha)\%$ confidence interval for $F(x_0, y_0)$.



$$C_n = n \int_{-\infty}^{\infty} (\hat{F}_n(x) - F_0(x))^2 dF_0(x),$$

where \hat{F}_n is the empirical distribution function of the random sample $\{X_i\}_{i=1}^n$ and F_0 is continuous. Under H_0 , $C_n \stackrel{d}{\to} Y$, where Y is a continuous random variable. Let $\mathbb{P}(Y > y_{1-\alpha}) = \alpha$. A test with an asymptotic significance level α rejects H_0 if $C_n > y_{1-\alpha}$.

Suppose that the data $\{X_i\}_{i=1}^n$ is from a continuous distribution $F_1 \neq F_0$.

(a) Let $D_n = \sup_{t \in [0,1]} \left| \frac{1}{n} \sum_{i=1}^n I\{U_i \leq t\} - t \right|$, where U_i are i.i.d. from a uniform distribution on [0,1]. Show that

$$\sup_{-\infty < x < \infty} \left| \hat{F}_n(x) - F_1(x) \right| \stackrel{d}{=} D_n.$$

(b) Assume that F_0 has positive density in \mathbb{R} . Show that

$$\lim_{n \to \infty} \mathbb{P}(C_n > y_{1-\alpha}) = 1.$$

Hint: $\sqrt{n}D_n = O_p(1)$, that is, for any small $\epsilon \in (0,1]$, there exists $c < \infty$ such that when n is large enough, $\mathbb{P}(\sqrt{n}D_n > c) < \epsilon$.

3. (12 points) A study observed 15 nursing home patients with dementia. The number of aggressive behavior incidents was recorded each day for 12 weeks. A day is called a "moon day" if it is the day before, during, or after a full moon. Table 1 provides the average number of aggressive incidents during moon days and other days of each subject. Based on this data, apply the permutation test to answer the following question: Can full moon influence the behavior of dementia patients?

Patient	Moon days	Other days	Patient	Moon days	Other days
1	3.33	0.27	9	6	1.59
2	3.67	0.59	10	4.33	0.6
3	2.67	0.32	11	3.33	0.65
4	3.33	0.19	12	0.67	0.69
5	3.33	1.26	13	1.33	1.26
6	3.67	0.11	_14	0.33	0.23
7	4.67	0.3	15	2	0.38
8	2.67	0.4			

Table 1: Aggressive behaviors of dementia patients

- (a) Formulate the null and alternative hypotheses. Define an appropriate test statistics, T. When do you reject the null hypothesis, for large or small value of T?
- (b) What is the total number of possible randomizations under H_0 ?
- (c) Derive a scheme to obtain the p-value.

4. (12 points) Let X_1, \ldots, X_n be a random sample from an unknown distribution F. Denote the empirical distribution function by \hat{F}_n . Let $\theta = h(F)$ be the quantity of interest, which is estimated by $\hat{\theta}_n = h(\hat{F}_n) = T(X_1, \ldots, X_n)$. Let $\hat{\theta}_{n1}^*, \ldots, \hat{\theta}_{nB}^*$ be a bootstrap sample, where $\hat{\theta}_{ni}^* = T(X_{i1}^*, \ldots, X_{in}^*)$ and $\{X_{i1}^*, \ldots, X_{in}^*\}$ are i.i.d. from \hat{F}_n .

Suppose that there exists an unknown monotone transformation l such that $l(\hat{\theta}_n) - l(\theta)$ has a symmetric distribution around 0. Show that the $(1 - \alpha)100\%$ percentile interval of θ is given by

$$[\hat{\theta}^*_{\left(\frac{\alpha B}{2}\right)}, \hat{\theta}^*_{\left(\left(1-\frac{\alpha}{2}\right)B\right)}],$$

where $\hat{\theta}_{(i)}^*$ is the *i*-th order statistisc of the bootstrap sample and B is sufficiently large.

5. (16 points) Let X_1, \ldots, X_n be a random sample from a distribution with continuous density f. For a given bandwidth h, the naive density estimator is given by

$$\hat{f}_n(x) = \frac{\hat{F}_n(x+h) - \hat{F}_n(x-h)}{2h},$$

where \hat{F}_n is the empirical distribution function.

- (a) Show that $\hat{f}_n(x)$ is a probability density.
- (b) Show that if $h = h_n \to 0$ and $nh_n \to \infty$ as $n \to \infty$, then

$$\hat{f}_n(x) \stackrel{p}{\to} f(x)$$
, as $n \to \infty$.

- 6. (10 points) Consider the example of New Jersey Pick-It Lottery. The data set consists of the winning numbers and their payoffs for the first 245 drawings of the lottery, as represented by the circles in Figure 1.
 - (a) A nonparametric regression estimator is implemented for this data. What is computed in the function hat_r? Write down the formula.
 - # The vector X stores observations of winning number.
 - # The vector Y stores observations of payoff.

h=20;

 $L=function(x,i)\{k=dunif((x-X)/h,-1,1); li=k[i]/sum(k); return(li);\}$

hat_r=function(x)

 $\{w=numeric(n); for(i in 1:n) \{w[i]=L(x,i)\} r_x=sum(Y*w); return(r_x);\}$

(b) The black curve in Figure 1 plots the function hat_r. Since it is not smooth, a student suggests to increase the value of h, the smoothing parameter. Do you agree? If yes, give your reason. If not, what is your solution to obtain a smooth estimate?

Nonparametric Regression

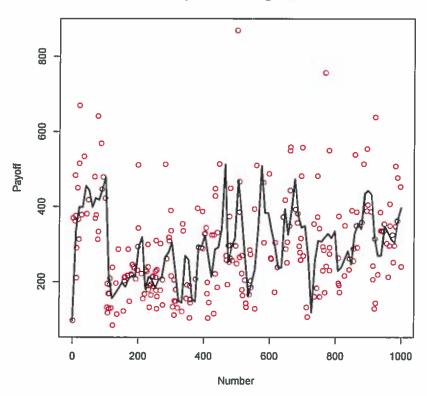


Figure 1: Nonparametric regression