## Algebraic Number Theory — January 9, 2017

## Problem 1.

- (a) Determine the ring of integers  $O_K$  and the class group  $\mathrm{Cl}(O_K)$  for the imaginary quadratic field  $K = \mathbb{Q}(\sqrt{-37})$ .
- (b) Determine the complete set of integer solutions to the equation  $X^2 + 37 = Y^3$ .

## Problem 2.

- (a) Show that the polynomial  $f = X^3 X + 2$  is irreducible in  $\mathbb{Q}[X]$ .
- (b) Let K be the number field  $\mathbb{Q}[X]/(f)$ . Find the ring of integers  $O_K$  of K.
- (c) Determine the class group of K.
- (d) What is the rank of the unit group  $O_K^*$ ?
- (e) Find an element of infinite order in  $O_K^*$ .

**Problem 3.** Let K be the quartic number field  $\mathbb{Q}(\alpha)$  where  $\alpha = \sqrt[4]{24}$ .

- (a) Show that  $\alpha^3/4$  is integral, find the ring of integers  $O_K$  of K, and compute the index  $[O_K : \mathbb{Z}[\alpha]]$ .
- (b) How many ideals of index 100 does the ring  $O_K$  have?
- (c) How many ideals of index 100 does the ring  $\mathbb{Z}[\alpha]$  have?

**Problem 4.** Consider the real quadratic field  $K = \mathbb{Q}(\sqrt{10}) \subset \mathbb{R}$ , and the quartic field  $L = K(\sqrt{-p}) \subset \mathbb{C}$  where p is a prime number.

- (a) Prove that  $\eta = 3 + \sqrt{10}$  is a fundamental unit of K, i.e., that  $O_K^* = \langle -1, \eta \rangle$ .
- (b) Show that  $O_K^*$  has finite index in  $O_L^*$ .
- (c) Show that  $[O_L^*:O_K^*]$  divides 6. [Hint: one way to do this is to first show that for every  $u \in O_L^*$  the complex conjugate of u is either a or u. There are other methods too.]
- (d) Show that  $N_{L/\mathbb{Q}}(O_L^*) = \{1\}$  and deduce that  $[O_L^*: O_K^*] = 3$  if p = 3 and  $[O_L^*: O_K^*] = 1$  if  $p \neq 3$ .