Midterm Exam Soft Condensed Matter Theory, April 20, 2016, 13:30h-16:30. This exam consists of 20 items divided into 4 problems. The maximum score for each item is 5 points. Write your name on each page. This is a *closed-book* exam, and electronic tools are not allowed.

Problem 1

Consider a single colloidal particle of mass m and charge q in a liquid at room temperature T in which a homogeneous static electric field exists with x-component E. We only consider the position x(t) and the velocity v(t) along the Cartesian x-direction at time t. Ignoring fluctuations, the Langevin equation with friction coefficient $\xi > 0$ takes the form

$$\frac{dv(t)}{dt} = -\xi v(t) + m^{-1}qE. \tag{1}$$

- (a) Solve this equation, for t > 0, for the case that x(0) = 0 and v(0) = 0.
- (b) If the density of colloids is ρ and the system is in a stationary state, give an expression for the conductivity σ defined by $j = \sigma E$ with j the charge flux (in the x-direction).

The external field is now switched to zero, E=0, such that the only force on a single colloid is the friction force and a fluctuating force f(t) that for all $s, s' \geq 0$ satisfies $\langle f(s) \rangle = 0$ and $\langle v(0)f(s) \rangle = 0$, with a white-noise character given by $\langle f(s)f(s') \rangle = 2mk_BT\xi\delta(s-s')$. The brackets $\langle \cdots \rangle$ denote an average over many trajectories.

- (c) Describe the origin of this fluctuating force in a few words and comment on the exactness and/or the approximation that underly the white-noise character.
- (d) Give the corresponding Langevin equation and show that its solution is $v(t) = v_0 \exp(-\xi t) + \exp(-\xi t) m^{-1} \int_0^t f(s) \exp(\xi s) ds$ with $v_0 = v(0)$ the initial velocity.
- (e) Calculate the mean-square x-displacement $\langle x^2(t) \rangle$ for $t \gg \xi^{-1}$.

Problem 2

Consider an isotropic and homogeneous fluid of N identical particles with mass m, momenta \mathbf{p}_i and positions \mathbf{r}_i for $i=1,\dots,N$, in a volume V at temperature T. The Hamiltonian reads $H(\Gamma) = K + \Phi$ with $K = \frac{1}{2m} \sum_{i=1}^{N} \mathbf{p}_i^2$ and $\Phi = \sum_{i < j}^{N} \phi(r_{ij})$ with $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ and $\phi(r)$ the pair potential, where $\Gamma = (\mathbf{p}_1, \dots, \mathbf{r}_N)$ denotes the microscopic state in 6N-dimensional phase space. The canonical partition function is $Z(N, V, T) = (NU^{3N})^{-1} \int_{\Gamma} d\Gamma \exp(-\beta H(\Gamma))$ with $\beta = 1$.

 $Z(N,V,T) = (N!h^{3N})^{-1} \int d\Gamma \exp(-\beta H(\Gamma))$, with $\beta^{-1} = k_B T$ and h the Planck constant. The density is $\rho = N/V$, the ensemble average is denoted by $\langle \cdots \rangle$, and the pair-distribution function is defined as $\rho^{(2)}(\mathbf{r},\mathbf{r}') = \langle \sum_{i\neq j}^{N} \delta(\mathbf{r}_i - \mathbf{r}) \delta(\mathbf{r}_j - \mathbf{r}') \rangle$.

- (a) Show that $\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2) = N(N-1) \int d\mathbf{r}_3 \cdots d\mathbf{r}_N \exp[-\beta \Phi(\mathbf{r}_1, \cdots, \mathbf{r}_N)]/Q$ and define the normalization factor Q.
- (b) Give arguments as to why one can write $\rho^{(2)}(\mathbf{r},\mathbf{r}') = \rho^2 g(|\mathbf{r}-\mathbf{r}'|)$ with g(r) the radial distribution function, and show for arbitrary $\phi(r)$ that $\langle H \rangle = \frac{3}{2}Nk_BT + \frac{1}{2}V\rho^2 \int d\mathbf{r}g(r)\phi(r)$.
- (c) Sketch g(r) of a hard-sphere fluid (diameter σ) for packing fractions (i) $\eta = 0.001$ and (ii) $\eta = 0.5$. Think of units on the axes. Also calculate the second-virial coefficient of this system.

Consider a gas-liquid interface with surface tension γ and mass density difference $\Delta \rho$ between the bulk liquid and bulk gas phase, in the Earth's gravity field with acceleration g pointing in the negative z-direction. Denoting the horizontal position by (x,y) and the local height of the interface by z = h(x,y) (so we ignore overhangs), with $\int dx dy h(x,y) = 0$, we can write for the capillary-wave Hamiltonian $H_{cw} = (\gamma/2) \int dx dy [(\partial_x h)^2 + (\partial_y h)^2 + h^2/\ell^2]$.

- (d) Explain the physics behind the terms in H_{cw} and derive an expression for the capillary length ℓ .
- (e) Diagonalize H_{cw} by a Fourier analysis, and explain how the roughness $\langle \int dx dy h^2(x,y) \rangle$ can be calculated from the Fourier representation.

Problem 3 Consider a bulk one-component fluid of density $\rho = N/V$ at temperatute T of which the pressure is given by $p(\rho, T) = k_B T (\rho + \frac{b}{2}\rho^2 + \frac{c^2}{3}\rho^3)$ with $b(T) = 3(T/T^* - 1)c$, with T^* and c positive known constants. The Debroglie wavelength of the particles is Λ .

- (a) Give a physical interpretation of c and sketch a pair potential that could give rise to b(T).
- (b) Calculate the critical temperature T_c and the critical density ρ_c of this fluid.
- (c) Calculate the chemical potential $\mu(\rho, T)$ of this fluid.
- (d) Describe in a few words the state of this fluid at $T = \frac{1}{2}T_c$ and $\rho = \rho_c$.
- (e) Give the order of magnitude of the thickness of the vapour-liquid interface of Argon far below the critical temperature.

Problem 4

- (a) Describe (i) whether or not a suspension of colloidal hard spheres can crystallise and (ii) how a gas-liquid transition can be induced in the fluid state of this system.
- (b) Derive the Gibbs adsorption equation that relates the adsorption Γ on a planar substrate of areas A at temperature T to the surface tension γ and the chemical potential μ .

Consider a three-dimensional classical fluid with an isotropic pair potential $\phi(r)$ at chemical potential μ at temperature T in an external potential $V_{ext}(\mathbf{r})$. The intrinsic Helmholtz free energy functional is denoted by $\mathcal{F}[\rho]$, with $\rho(\mathbf{r})$ the one-body density as a function of the position \mathbf{r} .

(c) Give $\mathcal{F}[\rho]$ for the case that $\phi(r) \equiv 0$.

We now assume that the excess (non-ideal) part of $\mathcal{F}[\rho]$ is given by

$$\mathcal{F}_{exc}[\rho] = \frac{1}{2} k_B T \int d\mathbf{r} \int d\mathbf{r}' \rho(\mathbf{r}) \rho(\mathbf{r}') f(\mathbf{r}, \mathbf{r}') + \int d\mathbf{r} \psi(\rho(\mathbf{r})), \tag{2}$$

with $f(\mathbf{r}, \mathbf{r}')$ the Mayer function and $\psi(\rho)$ a known function.

- (d) Calculate the direct two-body correlation function $c^{(2)}(\mathbf{r}, \mathbf{r}')$.
- (e) Give, as explicitly as possible, a condition for the equilibrium density profile $\rho_{eq}(\mathbf{r})$.