Final Exam Soft Condensed Matter Theory, July 1, 2016, 13:30h-16:30.

This exam consists of 20 items divided into 3 problems. The maximum score for each
item is 5 points. Write your name on each page and start every problem on a separate
piece of paper please. This is a closed-book exam, and electronic tools are not allowed.

Problem 1: Isotropic to Smectic A phase transition.

Under atmospheric pressure, a compound such as 10CB (or decyl-cyanobiphenyl) exhibits
a phase sequence of X-SmA-I with increasing temperature. Here “X” denotes the crystal
phase, “SmA” the smectic A liquid crystal phase and “I” the isotropic fluid phase. These
molecules are rodlike with a main body axis unit vector u. In the SmA phase these
molecules are not only aligned along some preferred direction n but in addition their
centres of mass form layered structures along n.

Here we view the SmA phase as a one-dimensional crystal; in the directions orthogonal
to n the SmA phase remains fluid-like. The degree of orientational order can be described
by the nematic scalar order parameter S = (3/2){(n - u)?) — 1/2. In the isotropic liquid
phase S = 0, whereas in the crystalline and smectic A phase 1 > S > 0; if the particles
are perfectly aligned, S = 1.

The density at position r can be written as p(r) = (p)(1+ 7 cos(g.r - n+ ¢), where {(p)
is the average number density of molecules in the fluid, g. is the magnitude of the wave
vector of the periodic density modulation and ¢ an arbitrary phase shift. The quantity
27 /q, is of the order of the length of the molecules. Here 7 is an order parameter that
describes the degree of layering of the molecules. In the isotropic phase n = 0, whilst in
the smectic and crystalline phases 1 # 0.

(a) Sketch three snapshots, each of about 10 molecules represented as u, in the I, SmA,
and X phase, respectively. Also argue why positive and negative values of n are
equally likely in the smectic A phase.

The transition between the smectic A phase and the isotropic phase is of second order. A
simple Landau theory describing this transition is based on a free energy density difference
Af [J m™?] between the I and SmA phases of the form
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Af(Sn) = 505" + (T = To)n* + 780" = S, (1)
where @ [J m™3], a [J m™® K1, 8 [J m™®] and v [J m™¥] are T-indendent positive
phenomenological parameters. The [-SmA transition temperature is given by Tg.

b) Argue why we only expect even orders in the order parameter n, calculate the ex-
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pectation values of the two order parameters 77 and S, and sketch their temperature
dependence.

(c) Verify the stability of the solutions of item (b). Hint: Use the trace and the deter-
minant of the hessian matrix 9*A f/9ads, with «, 8 = S, 9.

(d) Show that the entropy of the smectic A phas
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(e) Explain the main difference between thermotropic and lyotropic liquid crystals, and
to which of these two classes 10CB belongs.
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Even though for T > Ty the isotropic fluid is thermodynamically stable, fluctuations in
the relevant order parameter(s) do herald the emergence of the SmA phase for T < T.
These fluctuations can be incorporated in the theory by allowing for a non-local Landau
free energy functional AF' [J] of the form

AFISa) = [ dr [A7(S,m) + SKs(TS)? + 3K (Fn)] ©)

where Kg [Jm™' | and K, [J m™! | are “stiffness” parameters describing how strongly
the fluid resists gradients in the order parameters.

(f)

(g)

Show that the amplitudes 7y = [ drn(r) exp(—iq-r) and Sq = [ drS(r) exp(—iq-r)
of the Fourier modes of the fluctuations of wave vector q obey
5 5 A VkgT
2 = = —
(186" = (8-a 5a) = 2 3
and VksT
A 12 A~ ~ ‘B
= = = 4
< T’q ) (7’ qu{) a(T _ TO) + anz? ( )

where the brackets (---) indicate a thermal (ensemble) average. Hint: Presume
S « 1 and |n| < 1, discard all terms higher than quadratic order in the order
parameters and make use of the identity [drexp(—iq-r) = Viqo with dq0 the
usual Kronecker delta.

Discuss what happens to the mean-square amplitudes of the Fourier transforms of
the order parameters upon approach of the transition temperature Ty, and why S
is called a non-critical order parameter and n a critical order parameter. Show that
one length scale diverges, and give a physical interpretation of this length scale.

—Please turn to next page—



Problem 2

We consider a three-dimensional polymer solution of M polymers of contour length Nb in
a volume V. Here b is the length of a single bead, and N > 1 the degree of polymerisation.
The volume fraction is ¢, and the radius of gyration of a polymer is denoted by R, ~ bN".

(a) Give v, in the dilute regime, for the cases that the solvent is (i) good, (ii) bad, and
(ili) a ©-solvent. Briefly explain your answer (derivations are not needed).

(b) Calculate the crossover volume fraction ¢* between the dilute and the semi-dilute
concentration regime, as a function of N and v.

(c) Derive, using a DeGennes scaling argument, that the osmotic pressure in the semi-
dilute regime is proportional to ¢™ and calculate/estimate the exponent m.

Within Flory-Huggins theory, the free energy F' of the system is written as F' = (V/b*)kgT f(¢)
where

f(8) = 5o+ (1 - 9)n(1 - ) + x9(1 - ),

with y the Flory-Huggins interaction parameter.

(d) Calculate the critical volume fraction ¢., and the critical Flory-Huggins parameter
Xe-

(e) Describe in a few words the state of the system for x > x., assuming that ¢ = ¢..

Consider a polymer solution in a good solvent in contact with an external hard wall.

(f) Explain if the local segment concentration close to the wall is higher or lower than
that in the bulk far from the wall, or if it is the same. Is this similar or different
from hard spheres close to a hard wall?
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Problem 3

Consider a planar electrode at z = 0 at a given potential 1y in contact with an aqueous
electrolyte of relative dielectric constant € at room temperature 7" in the half-space z > 0.
The electrolyte contains n > 2 ion species with charge z;e, valency z;, and concentration
profiles p;(z), with ¢ = 1,2, .-+, n. The electric potential is denoted by (z) and satisfies
for z > 0 the Poisson equation ¢"(z) = A e(z) with eQ(z) the charge density, ¢

- (4mep)e
the vacuum permittivity, and e the proton charge.

(a) Express Q(z) in terms of the profiles p;(z) and formulate the bulk neutrality condi-
tion in terms of the valencies 2; and the bulk concentrations p;(oc0).
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(b) Derive an expression for the screening length £~! within linearised Poisson-Boltzmann

(LPB) theory.

We now assume that n = 2 with z; = +1 with concentration profiles p.(z) for the cations

(24 = 1) and anions (2 = —1), with a known bulk concentrations pi(c0) = p, and
(o) = 0.
(c) Derive, for z > 0, the LPB equation ¢"(z) = x£%*)(z), solve for (z), and calculate
p+(2).

(d) Calculate the areal charge density eo of the electrode for the case that ey < kgT.

We now assume that a cation C and an anion A can bind to form neutral pair AC according
to the ”quasi-chemical” reaction A+C+«++AC with a known equilibrium constant K.

(e) Calculate the fraction a € [0, 1] of ions that are part of a bound pair, far from any
electrode, if the total concentration of ions (bound and free) equals 2p.

The stationary Stokes equation —Vp + f +7V?*u = 0 and V - u = 0 describe the velocity
u of an incompressible fluid subject to an applied pressure gradient Vp and a body force
density f. Here 7 is the shear viscosity.

(f) Give an expression for f for the case of a constant applied electric field E = (E,, 0,0)
in the x direction perpendicular to the normal (0,0, 1) of the charged electrode in
the plane z = 0. The electrode is at a potential ¥y < 25 mV and in contact with
an aqueous 1:1 electrolyte of Debye length k=1 with (2 — o0) = 0, as treated in
item (c).

(g) Solve for the case of item (f) the stationary Stokes equation for the flow profile under
no-slip boundary conditions, assuming that: Vp = 0, only the z-component u,(z) is
non-vanishing due to translational invariance in the y-direction (0, 1,0), and u,(c0)
is finite. How is such a fluid flow called?

—THE END—



