Midterm Exam Soft Condensed Matter Theory, April 19, 2017, 13:30h-16:30. This
exam consists of 20 items, the maximum score for each item is 5 points. Write your name
on each page. This is a closed-book exam, and electronic tools are not allowed.

Problem 1
The Helmholtz free energy F(N,V,T) of some homogeneous classical fluid of N identical
spherical particles in a volume V' (density p = N/V) at temperature T is assumed to be

given by
Nec aN?

s = . —_— —_
F(N,V,T) = NksT(log =~ V- (1)
with non-negative constants a, b, and ¢, which are all independent of p, while @ and b are
also independent of T. Here kp is the Bolizmann constant.

(a) Calculate the pressure p(p,T) and the chemical potential p(p, T).
(b) Calculate ¢ by comparing the low-p limit of F' {or ) with that of an ideal gas.

{c) Give an interpretation of the constants a and b in the case that the system is (i) a
Lennard-Jones fluid and (ii) a colloid-polymer mixture (of N colloidal spheres).

We now wish to describe the same fluid, but now at a given chemical potential g and
temperature 7', in a given external potential V ,(r), i.e. the fluid is no longer assumed
to be homogeneous but has, in equilibrium, a spatially varying density profile po(r). The
intrinsic Helmholtz free-energy functional is assumed to be given within the local-density
approximation Flp] = [ dr from(p(r), T) with frem{p, T) the Helmholtz free energy per unit
volume of the homogenous fluid at density p at temperature T'.

(d) Give the variational grand potential functional ;[p] in terms of F[p] and the external
potential at the imposed chemical potential.

(e) Give the Euler-Lagrange equation for po(r) as explicitly as possible.

Problem 2

Consider a single colloidal sphere of radius a, mass m, position R(t), and velocity v(¢) in
water at room temperature T, with £ the time. The particle performs Brownian motion,
is in the origin at { = 0, and the velocity auto correlation function (vacf) is given by
(v(t) - v(t)) = Aexp[-€jt — t'|] with amplitude A > 0, friction constant £ > 0, and the
square brackets denoting an average over many trajectories.

(a) Calculate A, e.g. using equipartition of energy.
(b) Use the Langevin equation to explain in a few words how to derive the vacf.

(c) Express the mean-squared distance (R(2)?) in terms of the vacf and calculate (R(t)?)
in the (”ballistic”) short-time limit £ < £~!.

(d) For t > £~ we have (R(t)?) = 6D¢, with D = kgT/(67na) where n = 10~3Pa s
the viscosity. Estimate the time ¢p it typically takes to diffuse over a distance a, for
a= lpm.

(e) Explain in a few words how Jean Perrin could measure Avogadro’s number from col-
loidal diffusion.




Problem 3

Consider a classical fluid composed of N identical particles at positions r, fori =1,---, N,
in a volume V at temperature T. The potential energy is & = Zﬁ.J d(ry) with 1y = |r; — 14|
with ¢(r) the pair potential. The canonical ensemble average is denoted by (.-}, and the
pair-distribution function is defined as p®(r,r’) = {Zf’;) o(r; — £)d(r; — r')).

(a) Express the average potential energy (@) in terms of (an integral of) p(®,

(b) If the fluid is homogeneous and isotropic with density p = N/V, give arguments as to
why one can then write p'®)(r;, ra) = p2g{r2) with g(r} the radial distribution function.
Rewrite {®) in terms of g.

(c) Sketch g(r) of a Lennard-Jones fluid (diameter ¢ and well depth ¢) for T = ¢/kg at
(i) po® = 0.001 and (ii) pe® = 1. Think of units on the axes.

(d) Describe in a few words and with a few formulas how knowledge of the radial distri-
bution function gy s(r) of a hard-sphere fluid can be used to accurately obtain the free
energy of dense Lennard-Jones fluids.

The Ornstein-Zernike equation h(r) = c{r) + p [ dr'c(r’')h(|r — r|) relates the total corre-
lation function h(r) = g(r) — 1 to the direct correlation function c(r). We define S{q) =
(N-! Zf\; expliq - r;]) as the structure factor for wave number ¢ = |q|.

(e} Show for g # 0 that S(q) = (1 — pé(q))~! where é(q) = [ dre(r) expliq-r| is the Fourier
transform of c(r).

Problem 4
Consider a 1:1 electrolyte (dielectric constant ¢, temperature T, ion charges +e¢) in the half-
space z > 0 in contact with a planar electrode at a given potential ¢y at = = 0. The ion
concentrations are p4(2) and the bulk ion concentrations are given by p4.(c0) = p_{c0) = p;.
In SI units the Poisson equation reads "(z) = —Q(z)/(eoe) with g the vacuum permittivity
and @(z) the total charge density. We wish to calculate the electric potential ¥(z) within
(linearised) Poisson-Boltzmann theory.

(a) For z > 0, write the ion concentrations as Boltzmann distributions, express Q(z) in
terms of py(z), and combine all this into the Poisson-Boltzmann equation for 3(z).

{b) Show for z > 0 that a dimensionless, properly scaled and sufficiently small potential
satisfies ¢"(2) = ~®¢(z) . Give the relation between #(z) and ¢(z) and derive an
expression for x.

(c) Solve the equation of {b) for ¢(z) and use the result to give an expression for the
surface charge density of the electrode. How small should [i] be for this result to be
accurate?

A mixture of N colloidal spheres at positions R; and N, solvent molecules at positions r;
has potential energy ®({R}, {r}) composed of colloid-colloid, colloid-solvent, and solvent-
solvent interactions, and has effective solvent-induced interactions ®.;;({R}; u5, T') between
the colloidal spheres with u, the solvent chemical potential.

(d) Show how &.zf({R}; s, T) can be derived from ®{{R}, {r}).

(e) Give two examples of medium-induced interactions between colloidal spheres, and two
techniques to experimentally measure them.



