Final Exam Soft Condensed Matter Theory, June 30, 2017, 9:00h-12:00. This exam
consists of 20 itewns, the maximum score for each item is 5 points. Write your name on each
page. This is a closed-book exam, and electronic tools are not allowed.

Problemn 1 Uniaxial nematic liquid-crystalline states have been observed in many different
kind of fluid. Ivotropic and thermotropic. For both cases, molecular statistical mechanical
theories have been proposed to explain the spontaneous alignment of the (usually rod-like)
nematogenic particles. Maier-Saupe theory is designed to apply to thermotropic nematics,
whilst Onsager theory describes lyotropic nematics.

(a) Explain (i) the main difference between thermotropic and lyotropic nematic liquicd
crystals, and (ii) what drives the spontaneous ordering in these two types of liquid
crystal.

Some compounds also exhibit a so-called smectic A phase under conditions in between those
where the nematic and the crystal phases are stable. The smectic A phase resembles the
nematic in that the particles that imake up the fluid are aligned along a director, but differ
in the sense that the particle density is not uniformm but modulated along the director. This
is caused by the freezing out of one positional degree of freedom of the particles. In a sense,
particles attain crystalline order along the director but remain fluid-like perpendicular to
that.

The typical wavelength of the density modulation is the size of the molecules, d, and
the density variation is proportional to cos(27z/d) with z the spatial co-ordinate along the
director. A simple theory proposed by MacAlillan and Maier, which has the same ingredients
as that of Maier and Saupe describing the nematic transition in thermotropics, is based on
the following Helmholtz free energy functional
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Here, NV is nummber of particles in a slab of thickness d, reflecting the periodicity of the
density modulation, ¥(z) the positional distribution function of the centres of mass of the
particles in the slab, AU is the excess molecular field not captured by that driving the
nematic transition. Obviously, the distribution function is normalised, ff:f dzy(z) = 1;
3 = 1/kgT is as usual the reciprocal thermal energy, with &g Boltzmann’s constant and T
the absolute temperature.

(b) Describe the physical background of the two ingredients in this free energy functional.

A sensible trial molecular field is

AU(z) = —eo cos (222) : (2)

where € is the strength of the van der Waals interaction between the particles driving the
transition to the smectic A phase. Arguably, this is strongest for particles in register, that
is, for particles that line up perfectly. The degree of positional ordering is described by the
smectic order parameter o. defined as

o= f+d:l2 dz(z) cos (2;12) . (3)
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(c) Show that the most probable distribution of material in the smectic A pliase obeys the
following self-consistent field equation,

Piz) = %exp [—-;ﬁcacos (—2?)] , (4)

where Z acis as a normalisation constant.

{(d) Show that the uniform distribution, describing the nematic phase, is a solution to
equation (4) for all temperatures 7', and that the associated free energy obeys AF = 0,
implying that the frec energy functional describes the difference in free energies of the
sinectic phase and the reference nematic phase.

The self-consistent field equation can be solved by presuming the ordering is weak and o < 1.
In that case we find for the order parameter a second solution
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which becomes relevant if 3¢ > 4, ie., for T' < ¢/4dkp. This fixes the nematic-smectic
A transition temperature at Ty_sma = €/4dkg. According to the model, the transition is
second order.

(e) Describe how we can verify that for T < Tx_g,a the smectic A phase is indeed the
thermodynamically stable phase, and that the nematic phase nust be thermodynam-
ically unstable.

Problem 2

Consider a single ideal polymer of N + 1 beads at positions r; with fixed bond length
b = |ripq —ri]. The end-to-end vector is R = b Zfil u; with u; the unit vector pointing from
bead i to bead i + 1. The chain is long, hennce N > 1.

(a) Give the molecular reason for chain flexibility, and argue why thermal averaging is
needed in the description of a typical polymer such as polyethylene at room tempera-
ture 7.

(b) Calculate the thermally averaged end-to-end vector (R} and its mean-square (R - R)
for a so-called flexible chain that satisfies (u;) = 0 and (u; - w;) = exp(—|i — jjb/€)
with £ & Nb the (presumably known) persistence length of the chain. Sinplify your
final result for the case € > b.

The probability distribution P(R, V) for a perfectly flexible ideal chain (with € < Nb) with
its first segment in the origin satisfies P(R, N) = (47)~! [duP(R - bu, N - 1).

(c} Give a physical motivation for this relation and use it to derive a diffusion-like equation

for P(R, N).

The diffusion-like equation of (c) predicts for the radius of gyration Ry o< (R-R)Y? oc N1/2,
but experimetally it is found that R, o« N* with v # 1/2.

(d) Give the numerical value of v in (i) good and (ii) bad solvents, and discuss in a few
words the origin and the consquences of the deviation from v = 1/2.
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(e) Derive an expression (in terms of N and v) for the volume fraction ¢* that separates
the dilute from the so-called semi-dilute regime for polymers in a good solvent.

Problem 3
We cousider a one-component fluid of number density p(r.t) and fAuid velocity u(r, t) at
position r at time {.

(a) Use the continuity equation to show that V - u(r,f) = 0 if the fluid is incompressible.

The Navier-Stokes equation for an incompressible fluid with mass density p,, and viscosity
n reads p, (Ou/0t) + p(u - Viu = nV?u - Vp + £, where p is the hydrostatic pressure and
f an external body force,

(b} Simplify the incompressible Navier-Stokes equation as much as possible for the case of
stationary and slow laminar flow conditions (i.e. at low Reynolds number Re) without
body forces, in the geometry of a narrow slit of height // and lenghth L = H such
that z € [0. H] and 2 € [0, L]. with an applied pressures pp at » < 0 and p = p;, at
x > L such that the fluid is pushed through the slit in the x-direction; the width in
the y-clirection can be taken as infinity.

In the geometry of (b). but now in the case of two identical charged surfaces = = 0 and z = #,
and in absence of any pressure gradient (so pg = p;, = 0), an electric field E = (E,.0,0) is
applied. Hence the body force is f = q(z)E with g(z) the charge density in the flurd. The
stationary Stokes equation can then be written as nd?u.(z)/dz* = ¢(z)E;.

(c) Where does the body force come from in the case that the fluid is an electrolyte?

(d) Use the Poisson equation V2ii(z) = —cpeg(z) with (z) the potential and eep the
dielectric permittivity of the fluid to show that the electric field causes the fluid in the
middle of the slit, at z = H/2 far from the walls, to flow with velocity u (H/2) =
—ecot(0) Bz /1. provided no-slip boundary conditions #,.{0) = u (H) = 0 are used.

(e) Argue in a few words why the result of (d) is an example of linear response, and give
two other linear-response examples of transport phenomena.

Problem 4

{a) Describe in a few words what could happen if enough polymers with a radius of gyration
of 100 nm are added to a suspension of hard spheres of diameter 200 nm at a packing
fraction of, say, 0.10, under good solvent conditions. Motivate your answer.

(b} Describe in a few words what could happen if an aqueous suspension of highly charged
colloidal spheres (diameter 100 nm, packing fraction 0.3, zeta potential 100 mV) slowly
gets de-ionised from an initial NaCl concentration of 100mAI to a final NaCl concen-
tration of 0.01mM. Motivate your answer.

(c) Describe in a few words what structures you would expect to self-assemble in a melt
of block-copolymers composed of two mutually immiscible blocks of monomer A and
B if (i) the two blocks are equally long, and (ii) block A is much longer than block B.

(d) Explain why and how the surface charge of a colloidal sphere in water can change with
pH.

(e) Derive Fick’s law from Dynamic DFT at the ideal-gas level.






