“_: 7dm3 woker 1S 1% ;—%\3 = W‘ﬁ

1
10y - o uvé;

Midterm Exam Soft Condensed Matter Theory, April 11, 2018, 13:30h-16:30. This exam
consists of 18 items, the maximum score for each item is 5 points. Write your name on each page.
This is a closed-book exam, and electronic tools are not allowed. Give arguments for your answers
and write clearly -unreadable answers are no anwers. You may use that the viscosity of water is
n = 1073Pa s, the Bjerrum length of water at room temperature is 0.72nm, the Stokes-Einstein
equation for the diffusion coefficient of a sphere of radius a reads D = kpgT/6mna with T the
temperature and kg = 1.38 - 107237 /K the Boltzmann constant. The differential of the internal
energy is dU = TdS — pdV + pdN + vdA + %dQ — fdL + - -- with the usual meaning of symbols.

Problem 1
Consider a one-component system in a volume V' at temperature T and chemical potential u.

The number of particles in this system, N, fluctuates according to the probability distribution
W(N) = EY(u, V,T) exp[(uN — F(N,V,T))/kgT| where F(N,V,T) is the Helmholtz free
energy of the N-particle system and E(y, V, T) the grand-canonical partition function.

'] (a) Show that the average number of particles, (N), is equal to ksT(dIn Z(p, V, T)/op)v.r-

----- —> (b) Show first that kgT(9(N)/8u)v.r = (N?) — (N)?, and use then c.g. the Gibbs-Duhem
equation to derive that ksT'(9p/dp)r = ((N?) — (N)?)/(N), with p the pressure.
Consider now the case of a homogeneous bulk fluid of colloidal hard spheres with a diameter
o at density p and temperature 7', with the Carnahan-Starling excess (over ideal) free energy
F..c = NkgT(4n — 3n?)/(1 — n)* with n the packing fraction.
)} (c) Give an expression for 7 in terms of the given variables and calculate the hard-sphere
pressure p within the Carnahan-Starling approximation.

— (d) Calculate the second-virial coefficient By(T') of hard spheres and check whether or not
your result of (c) is consistent with By(T).

)‘t (e) Sketch the radial distribution function g(r) of these hard spheres for (i) 7 = 0.01 and
(ii) » = 0.49. Think of units/scales on both axes and distinguish the two graphs clearly.

9\} (f) Derive and/or explain how the hard-sphere free energy Fys(N,V,T) and the hard-
sphere radial distribution function g(r;7) can be used to accurately calculate the free
energy of dense Lennard-Jones fluids.

~— (g) What happens to a colloidal hard-sphere system if n > 0.5? Briefly describe two
experimental techniques with which this can be observed.

> (h) An experimentalist tracks many trajectories of a single colloidal sphere in a dilute
hard-sphere suspension, and finds the displacements in the cartesian z-direction after
time ¢ to be distributed as a Gaussian o« exp(—az?/t) with o = 10s/um?. Estimate
the diameter of these hard spheres if the medium is water at room temperature.

Problem 2
The Helmholtz free energy F(N,V,T) of N Argon atoms of mass m - i
| WV, = 6.6-10"26

volume V' (density p = N/V') at temperature T is assumed to be given by ke e
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3) (a) Give a physical interpretation of a and b, and give their dimensionality. 8

(b) Derive an expression for A and explain whether > A% or b < A3 at T = 300K.

(c) Schetch the free energy density F/V as a function of p € [0,1/b] for (i) T > T, =
8a/27bkp and (ii) T < T., and graphically construct the coexisting gas- and liquid
density p, and p;, respectively. Explain your construction briefly.

We now consider an interface between the coexisting bulk gas phase (with density p,) and
bulk liquid phase (with density p;). The interface height at horizontal position (z,y) is
denoted by the height z = h(z, y), with a gravitational force mg acting on every Argon atom
in the downward vertical z-direction. The interfacial tension is known and denoted by 7,
and the average height can be set to zero without loss of generality.

(d) Present a derivation, or give and explain the ingredients, of the capillary wave Hamil-
tonian He, = 7 [ dedy[(9h(z,y)/0x) + (9h(=,y)/8y)* + ¢~*h*(z,y)] for this interface.
Derive an expression for the capillary length .

yl (e) Estimate (with arguments), or calculate, for the case of a typical air-liquid or oil—watfr
interface at room temperature, the order of magnitude of (i) the tension vy and (ii)
the capillary length ¢. Also give the order of magnitude of (iii) the interface thickness

v (R?) with RZ the lateral average of h? and (..) the thermal average.

Problem 3
Consider a 1:1 electrolyte (dielectric constant €, temperature T', ion point charges +e) in the

space between two parallel planar electrodes with equal surface potential ¥, at separation
H. The cartesian coordinate normal to the electrodes is z € [-H/2,H/2], ie. z = 0 is
the symmetry midplane of the system. The electrolyte is in osmotic equilibrium with a
bulk 1:1 electrolyte with total ion concentration 2p, at zero potential. We wish to calculate
the electric potential 1/(z) and the ionic concentration profiles p,(z) within (linearised)
Poisson-Boltzmann theory, for z € [—H/2, H/2]. In SI units the Poisson equation reads
Y"(z) = —Q.(2)/(coc) with ¢o the vacuum permittivity and Q.(z) the total charge density.

(a) For z € (—H/2, H/2), write the ion concentrations as Boltzmann distributions, express
Q.(z) in terms of p.(z), and combine all this into the Poisson-Boltzmann equation for
¥(2).

(b) Show for z € (—H/2, H/2) that a dimensionless, properly scaled and sufficiently small

potential satisfies ¢”(2) = k%¢(z) . Give the relation between 1(z) and ¢(z) and derive
an expression for k.

‘"’f; (c) Solve, tsing the boundary conditions, the equation of (b) for ¢(z) and calculate the

surface charge density of the electrodes.

A nuxture.of N colloidal spheres at positions R; and N, solvent molecules at positions r;
has pot_entlal energy ®({R}, {r}) composed of colloid-colloid, colloid-solvent, and solvent-
solvent interactions, and has effective solvent-induced interactions &, sr({R}; s, T) between
the colloidal spheres with Hs the solvent chemical potential. o

A (d) Express ®.;r({R}; u,, T), with motivation, in terms of ®({R}, {r}).

— (e) Give two examples of medium-induced interactions between colloidal spheres.



