Final Exam Soft Condensed Matter Theory, June 29, 2019, 9:00h-12:00. This exam consists of 20 items, the maximum score for each item is 5 points. Write your name on each page. This is a *closed-book* exam, and electronic tools are **not** allowed.

Problem 1

Consider a gas-liquid interface with surface tension γ and mass density difference $\Delta \rho$ between the bulk liquid and bulk gas phase, in the Earth's gravity field with acceleration g pointing in the negative z-direction. Denoting the horizontal position by (x,y) and the local height of the interface by z = h(x,y) (so we ignore overhangs), with $\int dx dy h(x,y) = 0$, we can write for the capillary-wave Hamiltonian $H_{cw} = (\gamma/2) \int dx dy [(\partial_x h)^2 + (\partial_y h)^2 + h^2/\ell^2]$.

- (a) Explain the physics behind the terms in H_{cw} and derive an expression for the capillary length ℓ .
- \Rightarrow 4 (b) Diagonalize H_{cw} by a Fourier analysis, and explain how the roughness $\langle \int dx dy h^2(x,y) \rangle$ can be calculated from the Fourier representation.

Problem 2

We consider a one-component 3D fluid at chemical potential μ at temperature T in an external potential $V(\mathbf{r})$, such that the density profile $\rho(\mathbf{r})$ is inhomogeneous. The intrinsic Helmholtz free-energy functional $\mathcal{F}[\rho]$ of this system is written as the sum of an ideal-gas contribution $\mathcal{F}_{id}[\rho]$ and an excess part that we assume to be given by $\mathcal{F}_{ex}[\rho] = \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' W(|\mathbf{r} - \mathbf{r}'|) \rho(\mathbf{r}) \rho(\mathbf{r}')$ with some known function $W(\mathbf{r})$.

- (a) Give an expressison for $\mathcal{F}_{id}[\rho]$.
- (b) Give, as explicitly as possible, a condition for the equilibrium density profile $\rho_{eq}(\mathbf{r})$.
- (c) Give an expression for the equilibrium grand potential of this inhomogeneous fluid.
 - (d) Calculate the direct correlation function $c^{(2)}(\mathbf{r},\mathbf{r}')$ of this fluid.
 - (e) If the pair potential between the particles of this fluid at center-to-center separation r is denoted by u(r), give W(r) for the case of a second-virial approximation.
- (f) Calculate the pressure $P(\rho_b)$ as a function of the bulk density ρ_b of this fluid for the case that $W(r) = 2k_BT$ for $0 < r < \sigma$ and W(r) = 0 for $r \ge \sigma$, where σ is a measure for the linear dimension of the particles.

Problem 3

The Gibbs free energy of a thermotropic 3D nematic liquid crystal at temperature T is assumed to be given by the (truncated) Landau expansion $G = G_0 + a(T - T^*)S^2 - bS^3 + cS^4$, with a, b, c, T^* given and fixed material-specific positive constants and S the uniaxial nematic order parameter.

- (a) Give the interpretation of G_0 , and argue why G can contain a cubic S^3 term but no # linear term in S.
 - (b) Calculate the temperature T_{IN} at which the phase transition takes place. Hint: you may use that one can rewrite $G G_0 = [a(T T^*) b^2/4c]S^2 + cS^2(S b/2c)^2$.
 - (c) Argue whether the transition is first or second order, and sketch the temperature dependence of the order parameter S(T) with T^* indicated on the T-axis.

Problem 4

We consider an incompressible fluid with viscosity η and mass density ρ_m . The fluid velocity $\mathbf{u}(\mathbf{r},t)$ at position \mathbf{r} at time t satisfies the Navier-Stokes equation $\rho_m(\partial \mathbf{u}/\partial t) + \rho_m(\mathbf{u} \cdot \nabla)\mathbf{u} = \eta \nabla^2 \mathbf{u} - \nabla p + \mathbf{f}$, where p is the pressure and \mathbf{f} an external body force.

(a) Derive an expression for the Reynolds number Re, and show that the Navier-Stokes equation reduces, in a stationary state with Re $\ll 1$, to the Stokes equation $\eta \nabla^2 \mathbf{u} - \nabla p + \mathbf{f} = 0$.

We consider a long cylindrical channel of length L and radius $R \ll L$ with symmetry axis \hat{z} along the z-direction and radial coordinate r, and with an inlet at z=0 at pressure $p_0 + \Delta p$ and an outlet at z=L at pressure p_0 . The pressure drop Δp is small enough for the flow between inlet and outlet to be in the Re $\ll 1$ regime. Because of the long length of the channel we may also assume that the only non-zero component of u is its z-component, denoted by u_z . We first consider the case $f \equiv 0$.

- (b) Show that u_z does not depend on z, that p does not depend on r, and that $p = p_0 + (1 z/L)\Delta p$ for $z \in [0, L]$.
- (c) Use that $\nabla^2 = \frac{\partial^2}{\partial z^2} + r^{-1} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}$ in cylinder coordinates with azimuthal symmetry to find $u_z(r)$ for no-slip boundary conditions $u_z(r) = 0$.

We now consider a slit-like channel with height H; bottom and top are in the two planes $z=\pm H/2$, both at zeta-potential ψ_s . The channel has length $L\gg H$ and connects the inlet at x=0 to the outlet at x=L. Now there is no applied pressure drop, so $\nabla p\equiv 0$, but there is a weak applied electric field $\mathbf{E}=(E_x,0,0)$ in the x-direction, which gives rise to a body force $\mathbf{f}=q(z)\mathbf{E}$ where $q(z)=-\epsilon\epsilon_0d^2\psi(z)/dz^2$ is the electric charge density due to a diffuse cloud of ions for |z|< H/2. Here $-xE_x+\psi(z)$ is the electrostatic potential in the channel.

(d) Calculate the x-component $u_x(z)$ of the fluid velocity profile $\mathbf{u}=(u_x,0,0)$ in terms of $\psi(z)$, in the stationary state under no-slip boundary conditions, and give the velocity $u_x(0)$ in the middle of the slit for the case that the Debye length is much smaller than the height H.

The equation $\mathbf{J} = -D(\nabla \rho + \rho \beta \nabla U) + \rho \mathbf{u}$ expresses the flux $\mathbf{J}(\mathbf{r}, t)$ of an uncharged solute species of density $\rho(\mathbf{r}, t)$ in a static external potential $U(\mathbf{r})$ and in a fluid of velocity $\mathbf{u}(\mathbf{r})$.

(e) Give a motivation for all three terms in this equation, and give an expression for the equilibrium density profile $\rho_{eq}(\mathbf{r})$.

Problem 5

- (a) Sketch, in a single graph, the equilibrium density profile $\rho(z)$ as a function of the distance z > 0 from a planar hard wall, for a hard-sphere fluid (diameter σ) at a bulk packing fraction far from the wall given by (i) 0.01 and (ii) 0.48.
- (b) Describe in a few words what could happen if an aqueous suspension of highly charged colloidal spheres (diameter 100 nm, packing fraction 0.3, zeta potential 100 mV) slowly gets de-ionised from an initial NaCl concentration of 100mM to a final NaCl concentration of 0.01mM. Motivate your answer.
- (c) Explain why the surface charge of a colloidal sphere in water can change with pH.
- (d) Derive Fick's law from Dynamic DFT at the ideal-gas level.

-THE END-