

Exam

Asymptotic Statistics MasterMath SFM (MSc.)

Final exam

Date: Wednesday 4 January 2017

Time: 10.00-13.00

Number of pages: 4 (including front page)

Number of questions: 3

Maximum number of points: 75

For each question is indicated how many points it is worth.

BEFORE YOU START

- · Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your mobile phone has to be switched off and be put in your coat or bag.
 Your coat and bag should be on the ground.
- Tools allowed: None.. Other tools are not allowed.

PRACTICAL MATTERS

- The first 30 minutes you are not allowed to leave the room, not even to visit
 the toilet.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- · If applicable, fill out the evaluation form at the end of the exam.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your registration and a valid ID.
- During the examination it is not permitted to visit the toilet, unless the invigilator gives permission to do so.

Good luck!

Problem 1 (Limit distributions)

variance of the limiting normal distribution?

For the first half of this problem, let $X_n \sim \text{Bin}(n,p_1)$ and $Y_n \sim \text{Bin}(n,p_2)$ (with $0 < p_1, p_2 < 1$ and $n \ge 1$) and assume that X_n and Y_n are independent.

- a. (10 points) Find sequences (r_n) and (q_n) in $\mathbb R$ such that the sequence $r_n(X_n/Y_n-q_n)$ converges in distribution to a normal distribution. What are the mean and
- b. (5 points) For given confidence level $0<\alpha<1$, determine an asymptotic confidence interval for the fraction $\theta=p_1/p_2$.

For the second half of this problem, let X_1, \ldots, X_n form an *i.i.d.* sample from a distribution with density f(x) = 2x with $x \in [0, 1]$. Denote $X_{(n)} = \max_{1 \le i \le n} X_i$.

- c. (10 points) Show that $Z_n=2n(1-X_{(n)})$ converges in distribution to a standard exponential distribution.
- d. (5 points) Determine sequences (a_n) and (b_n) in $\mathbb R$ such that $a_n(X_{(n)}\log X_{(n)}-b_n)$ converges in distribution to a (tight but non-degenerate) limit distribution. Which limit distribution?

Problem 2 (A transformed exponential distribution)

Let X_1,X_2,\ldots be *i.i.d.* non-negative real-valued random variables with single-observation distribution P_{μ_0} and Lebesgue density $p_{\mu_0}:\mathbb{R}\to[0,\infty)$ for some $\mu_0>0$, with $p_\mu(x)=0$ for x<0, and

$$p_{\mu}(x) = 2\mu x e^{-\mu x^2},$$

for $x \ge 0$ and $\mu > 0$. A change of variables $Z = X^2$ leads to $Z \sim \text{Exp}(\mu)$.

Hint: you may use the following integrals,

$$\int_0^\infty x^2 e^{-x^2} \, dx = \frac{\sqrt{\pi}}{4}, \int x^3 e^{-x^2} \, dx = -\frac{e^{-x^2} (x^2+1)}{2} + C, \int x^5 e^{-x^2} \, dx = -\frac{e^{-x^2} (x^4+2x^2+2)}{2} + C,$$

a. (5 points) Find the maximum-likelihood estimator $\tilde{\mu}_n$ for μ_0 based on the first n sample points X_1,\ldots,X_n .

b. (5 points)

Calculate the expectation $E_{\mu}X_1^2$ of the second moment for a single observation and show that $\hat{\mu}_n$ is a consistent estimator sequence for μ_0 .

c. (5 points)

Calculate the Fisher information I_{μ} for a single observation X_1 , show that $\mu\mapsto I_{\mu}$ is continuous and that $I_{\mu}>0$ for all $\mu>0$.

d. (5 points)

Show that, for any x>0, the map $\mu\mapsto \log p_\mu(x)$ is Lipschitz in a neighbourhood of μ_0 . In other words, prove that for some $\epsilon>0$ and any $\mu_1,\mu_2>0$ such that $|\mu_1-\mu_0|<\epsilon$ and $|\mu_2-\mu_0|<\epsilon$,

$$\left|\log p_{\mu_1}(x) - \log p_{\mu_2}(x)\right| \le \dot{\ell}(x)|\mu_1 - \mu_2|,$$

for some measurable function $\dot{\ell}: \mathbb{R} \to \mathbb{R}$ such that $E_{\mu_0} \dot{\ell}^2 < \infty$. Hint: for any $\mu_1, \mu_2 \ge \mu > 0$, we have $|\log \mu_1 - \log \mu_2| \le |\mu_1 - \mu_2|/\mu$.

e. (5 points)

State a theorem from the lecture notes and use parts a.-d. to prove that $\sqrt{n}(\mu_n-\mu_0)$ is asymptotically normal under P_{μ_0} . Give the variance of the limit distribution.

The moment estimator for μ_0 is,

$$\bar{\mu}_n = \frac{\pi}{4} \left(\frac{1}{\overline{X}_n} \right)^2,$$

where \overline{X}_n denotes the sample average.

f. (5 points)

Use the delta rule to find the limit distribution for $\sqrt{n}(\tilde{\mu}_n - \mu_0)$. Calculate the relative efficiency of $\hat{\mu}_n$ and $\tilde{\mu}_n$ and explain why you prefer $\hat{\mu}_n$ or $\tilde{\mu}_n$.

Problem 3 (Variance stabilization)

Let X_1,X_2,\ldots be *i.i.d.* non-negative real-valued random variables with single-observation distribution $\operatorname{Exp}(\lambda)$ for some $\lambda>0$, with Lebesgue density $p_\lambda:\mathbb{R}\to [0,\infty)$ where $p_\lambda(x)=0$ for x<0 and $p_\lambda(x)=\lambda\,e^{-\lambda\,x}$.

a. (5 points)

Find the maximum likelihood estimator $\hat{\lambda}_n$ for λ based on the first n sample points X_1, \ldots, X_n .

- b. (5 points) Use the delta rule to find a sequence a_n and a constant b such that $a_n(\tilde{\lambda}_n-b)$ converges in distribution to a tight but non-degenerate limit distribution. Also give the limit law.
- c. (5 points) Perform a variance-stabilizing transformation for $\hat{\lambda}_n$ and construct the associated asymptotic confidence intervals for confidence levels $1-\alpha$, $(0<\alpha<1)$.