

Faculty of Science

Exam

Asymptotic Statistics MasterMath SFM (MSc.)

Mid-term exam

Date: Wednesday 26 October 2016

Time: 10.00-12.00

Number of pages: 3 (including front page)

Number of questions: 3

Maximum number of points: 30

For each question is indicated how many points it is worth.

BEFORE YOU START

- · Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your mobile phone has to be switched off and be put in your coat or bag.
 Your coat and bag should be on the ground.
- Tools allowed: Other tools are not allowed.

PRACTICAL MATTERS

- The first 30 minutes you are not allowed to leave the room, not even to visit the toilet.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, fill out the evaluation form at the end of the exam.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your registration and a valid ID.
- During the examination it is not permitted to visit the toilet, unless the invigilator gives permission to do so.

Good luck!

Problem 1

- a. (5 points) Let X_1, X_2, \ldots denote real-valued random variables. Assume convergence of the sums $\sum_{n\geq 1} P(|X_n|>\epsilon) < \infty$ for every $\epsilon>0$. Show that $X_n \stackrel{P}{\longrightarrow} 0$.
- b. (5 points) Suppose that the real-valued random variables X_1, X_2, \ldots are i.i.d.-U $[0, \theta]$ for some unknown $\theta > 0$. We estimate θ with estimators $T_n(X_1, \ldots, X_n) = \max_{1 \le i \le n} X_i$. Find a constant $a \in \mathbb{R}$ and a sequence $b_n \to \infty$ such that,

$$b_n(a-T_n) \stackrel{\theta}{\leadsto} Z$$
,

where Z is distributed tightly but non-degenerately. Which distribution does Z have?

Problem 2 (Binomials weakly converging to Poisson)

Let N denote the set of all non-negative integers $\{0,1,2,3,\ldots\}$ and let X,X_1,X_2,\ldots denote random variables taking values in N.

a. (5 points) Show that $X_n \leadsto X$, if and only if, $P(X_n = x) \to P(X = x)$ for each $x \in N$, as $n \to \infty$.

Recall that for $Y \sim \text{Bin}(m, p)$ and $Z \sim \text{Poisson}(\lambda)$,

$$P(Y=x) = \binom{m}{x} p^x (1-p)^{m-x}, \qquad P(Z=x) = \frac{e^{-\lambda} \lambda^x}{x!},$$

give the densities with respect to the counting measure on N.

b. (5 points) Assume that $X_n \sim \text{Bin}(n,p_n)$ with $p_n \in [0,1]$ for all $n \geq 1$. Show that if, for some constant $\lambda > 0$, $n p_n \to \lambda$ as $n \to \infty$, then the sequence (X_n) converges weakly to $\text{Poisson}(\lambda)$.

Hint: In your calculation of $P(X_n = x)$, use Stirling's approximation for the factorials n! and (n - x)!:

$$\frac{k!}{\sqrt{2\pi k}} \left(\frac{k}{e}\right)^{-k} \to 1,$$

as $k \to \infty$.

Faculty of Science

Problem 3 (Asymptotic confidence ellipsoids)

Let X_1, X_2, \ldots be an *i.i.d.* sample, modelled with a parametric family of distributions P_{θ} , $\theta \in \mathbb{R}^k$. Assume we have an estimator sequence $T_n(X_1, \ldots, X_n)$ such that for all $\theta \in \mathbb{R}^k$,

$$\sqrt{n}(T_n - \theta) \stackrel{P_{\theta}}{=} N_k(0, \Sigma_{\theta}),$$

for some non-singular $k \times k$ covariance matrix Σ_{θ} . We also assume that there exists a sequence $S_n(X_1, \ldots, X_n)$ that estimates the covariance martix consistently, that is:

$$S_n \xrightarrow{P_{\theta}} \Sigma_{\theta}$$

for all $\theta \in \mathbb{R}^k$.

a. (10 points) Show that for all $\alpha \in (0,1)$, the ellipsoids,

$$C_n(X_1,\ldots,X_n) = \left\{ \theta \in \mathbb{R}^k : n(T_n - \theta)^T S_n^{-1} (T_n - \theta) \le \chi_{k,\alpha}^2 \right\}$$

in \mathbb{R}^k are confidence sets of asymptotic confidence level $1-\alpha$.