Compiler Construction
Exam

Wed, Jun 28, 2017, 9:00-12.00

¢ Please make sure that you write your name and student number on each
sheet of paper that you hand in. On the first sheet of paper, indicate the
total number of sheets handed in.

» This is a closed-book exam: it is not allowed to consult lecture notes,
books, etc. Whenever reference material is required it is given as part of
the exam.

o Always explain the reasoning behind your answers, even when not explic-
itly asked for.

» Plan the making of the exam. Some questions involve coding; it is easy
get stuck in a detail and spend too much time on it.

o Each question includes the amount of points which can be obtained when
done correctly, adding up to a total of 100.

o Note: there are 14 separate questions divided over 5 sections.

1 General questions to warm up

,/ Question 1. (6 points) The compiler is often considered to consist of a front-end
and back-end. What kind of aspects of compilation are handled by the former,
and what kind by the second? Name two compilation phases for each.]

Question 2. (6 points) Defend and/or attack the statement "Static analyses
always have to approximate”. "

2 Attribute Grammars

Consider the terms of the {(untyped) lambda-caiculus,

t

iTh

Tm terms,
defined by

t o= x| Azt | b b
and its use of variable symbols,

r & Var variables.

Using the UUAG systemn, we define the following grammar for representing tenns:

{type Var = String }

data Tm
| Var z:: {Var}
{Lamxz{Var} t) = Tm
{App 8y Tm a2 Tm,

V/ Question 3. (6 points) Define a Haskell function fu:: Tm — [Var] that collects
the free variables of a lambda-term. (The resulting list may contain duplicates.)
L]

An alternative notation for lambda-terms, using so-called De Bruiyn indices,
was invented by the Duteh mathematicion Nicolaas de Bruijn and allows for a
nauneless representation of variables. Its syntax, with terms ranged over by ¢,

t £ Tm nameless terms,
is given by
t ou= n| At |t ta

Each natural number in a nameless term denotes the oceurrence of a variable
and indicates how any binders there are between that occurrence and the
binder for its corresponding variable. For example, the following lainbda-terms,

Ar.r

Ar. Ay x

A Ay Azor 2 (y 2)

A AgAz. f Ay.gy) T,

are namelessly represented by, respectively,

AD
A1
AAA20(10)
AAA2(A20)0.

Let us use the following grammar to represent nameless terms:
{type Nat = Int}
data Tm
| Var n = {Nat}
| Lam 1 Tm
| ﬁ?);) T ::ﬁa::ﬁ.

Question 4. {10 points} Give attribute definitions for translating from the
conventional notation of kunbda-terms into a representation using De Bruijn

indices:
5/ attr Tm
syn deBruipn 2 Tm.
Introdnee and define any anxilliary attributes vou deewn necessary. u

3 Program analysis

/Question 5. (6 points) Given a partial order C on (L, L), where we may write
x C y instead of (z,y) € C. Give the formal condition(s) for a partial order to
also be a lattice.

i What distinguishes a lattice from a complete lattice (you may answer this for-
mally, or by appealing to intuition)?]

Question 6. (12 points) As explained in the book, Very Busy Expressions anal-
ysis aims to discover for each program point which expressions are guaranteed
to be used again before any of the variables in the expressions are redefined.

Given are these equations for the Very Busy Expressions analysis:
0 if £ € final($.)
FB(f) =
VBx(f) = { NU{VBx(C) | (€,0) € £1owR(5.)} otherwise
VBx(€) = (VBx(f) — killG(Bf)) U geny g(BY)
Now, answer the following questions: A \dechit!
IA define the analysis lattice,
/ v v
s give the kill and gen sets for the case of assignments,

explain how you can tell from the equations whether the analysis is back-
ward or forward

l/ and whether it is may or must.

'/- Are we looking for solutions with the smallest sets, or the largest? m

uestion 7. (6 points) Does the formula in the previous part also work for
programs that start and end with a While loop? Explain. n

4 Type systems
Consider a small, implicitly typed functional programming language,
t € Tm terms,

r € Var variables,
n & Nat naturals

defined by

t n= n | false | true |z | Az.l; | & & | let £ = ¢, in & ni,
| if t; then & else ¢; fi

and assume we subject it to the Hindley-Milner (HM} typing discipline. Its type
language is then built from type variables,

a €& TyVar={a.8.4.--} type variables,

anl stratified into types and type schemes, or monomorphic and polymorphic
types respectively.

T £ Ty types

¢ & TyScheme type schenmes,
given by

;0 = Nat | Bool |a | 7y —=1

o = T Va.o,.

In the slides a unification algoritlun was provided with the following type,
U : Ty x Ty — TySubst,

and that is used by algorithm W.
Question 8. (8 points) Give the substitution that results for each of the fol-
lowing calls to U (and error if the substitution fails):
‘4) Ula =+ 3, B a),

(ii) U{a — Bool = n, v — v — Nat),

(iii) L{a — Bool = 3, ¥ — al,

f/{,;ix-} U((Nat =+ a) = = Bool, B3—+a— 7).]
Assume an environment I' in the type rules for the HM system with

{id — Ya.a — a,
it — Nat — Nat,

const — Yo, Vh.a — b~ a,
e r

Question 9. (10 points) For the HM system, give the derivation trec for:

4

let f =Nt -3 Ar = ¢ (i 2) in const (f 4 4) (f 1d True)

Clearly indicate which type rules have been applied where, with names like VAR,
LET, APP, ABS, NAT, TRUE and FALSE. Maybe you can come up with clever
abbreviations and such to make the trec more consise. That is fine, as long as
can understand it. [

The limit of what HM can infer is illustrated by the following exanple, which
the HM typing discipline cannot type:

let f = Ai -+ const (2 3) (i true) in

let £ = f id inxr

,/qu.-;ﬂou 10. (6 points) Why is this the case? Where i the HAL tepe svstem
does the tvping of the example go wrong? m

5 Annotated Type Systems
Question 11. (G points) Annotations for side-effect analysis are defined as
/follows:
@ u={la}| {m:=}| {news} [z Ua |0
Explain what these annotations represent. n

Question 12. (6 points) Annotations are often considered equal modulo UCAL
What does that mean? n

v Question 13. (6 points) Explain (in detail) the following type and effect rule:

fi—sgel:ﬁﬂﬁ]&m fl—sﬁeQ:ﬁ&wg
Theeeo: & goUp U

[app}

"/Question 14. (6 points) Give a rule for subeffecting for this analysis. »

(=2]

