Differential Topology - Examination (January 23rd, 2013)

1. Please...

- (a) make sure your name and student number are written on every sheet of paper that you hand in;
- (b) start each exercise on a new sheet of paper and number each sheet.
- 2. All results from the lectures and the exercises can be taken for granted, but must be stated when used.

Exercise 1 (3 points). Let P, M and N be smooth manifolds. Moreover, let

$$\hat{F}: P \times M \to N$$

be a smooth map. We define

$$F: P \to \mathcal{C}^{\infty}(M, N), \quad p \mapsto F_p(m) := \hat{F}(p, m).$$

- 1. Show that F is in general *not* continuous if one equips $\mathcal{C}^{\infty}(M, N)$ with the strong \mathcal{C}^{∞} -topology.
- 2. Prove that F is continuous if one equips $\mathcal{C}^{\infty}(M,N)$ with the weak \mathcal{C}^{∞} -topology.

Exercise 2 (4 points). Let M be a manifold of dimension $m \geq 2$ and N a manifold of dimension 2m-1.

1. Prove that the subset

 $Y:=\{f:M\to N \text{ smooth}: \forall x\in M \text{ rank}(d_xf) \text{ is either } m \text{ or } m-1\} \subset \mathcal{C}^\infty(M,N)$ is residual.

2. Prove that there is a residual subset $Z \subset \mathcal{C}^{\infty}(M, N)$ such that if $f \in \mathbb{Z}$,

$$X_{m-1}(f) := \{x \in M : d_x f \text{ has rank } m-1\} \subset M$$

is a submanifold of dimension 0, which is closed.

Exercise 3 (3 points). Let v be a vector field on the n-dimensional disk

$$D^n := \{ x \in \mathbb{R}^n : ||x|| \le 1 \} \quad \subset \mathbb{R}^n,$$

which does not vanish on the boundary S^{n-1} .

1. Prove that if v has no zeros on D^n , then the map

$$\phi_v: S^{n-1} \to S^{n-1}, \qquad x \mapsto \frac{v(x)}{||v(x)||}$$

has degree 0.

2. Suppose that v is transverse to the boundary, i.e.

$$T_r S^{n-1} + \langle v(x) \rangle = T_r \mathbb{R}^n$$

holds for all $x \in S^{n-1}$. Show that such a vector field v must have a zero in the interior of D^n .

(Hint: It might help to consider the decomposition of $v|_{S^{n-1}} = v_{||} + v_{\perp}$, where $v_{||}$ is tangential to S^{n-1} , while v_{\perp} is perpendicular to S^{n-1} .)